HDU 1086 You can Solve a Geometry Problem too (判断线段相交)

You can Solve a Geometry Problem too
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9956 Accepted Submission(s): 4929

Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point.

Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.

Output
For each case, print the number of intersections, and one line one case.

Sample Input

2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0

Sample Output

1
3

题解:

判断两条线段是否相交。
属于计算几何的基础题,分为两部,1:快速排斥检验,即以直线为对角线构造矩形,如果矩形不相交,那么两条线段一定不相交。判断公式为直线1的两个点的最大的x大于直线2的两个点的最小的x,同时直线2的最大的x大于直线1的两个点的最小的x。这样就在x轴的方向上保证了矩形相交,同理在y轴方向上也这么判断一下。2:跨立检验,即判断直线2的两个点是否在直线1的左右两边,直线1的两个点是否在直线2的两边。

AC代码如下:

#include <iostream>
#include <cstdio>
#define eps 0.0000001
using namespace std;

struct po{ // point
    double x,y;
    po(){}
    po(double _x,double _y){x = _x;y = _y;}
    po operator -(po p2) {
        return po(x-p2.x,y-p2.y);
    }
    double operator * (po p2){
        return x*p2.y - p2.x*y;
    }
};

struct line{
    po p1,p2;
}l[110];

bool judge1(line l1,line l2){ // 快速排斥检验
    return ( max(l1.p1.x,l1.p2.x) >= min(l2.p1.x,l2.p2.x) && max(l2.p1.x,l2.p2.x) >= min(l1.p1.x,l1.p2.x) && max(l1.p1.y,l1.p2.y) >= min(l2.p1.y,l2.p2.y) && max(l2.p1.y,l2.p2.y) >= min(l1.p1.y,l1.p2.y) );
}
bool judge2(po p1,po p2,po p3,po p4){// 跨立检验
    double m = (p2 - p1) * (p3-p1);
    double n = (p2 - p1) * (p4-p1);

    double mm = (p4 - p3) * (p2 - p3);
    double nn = (p4 - p3) * (p1 - p3);
    if(m * n <= 0 && mm*nn <= 0) return true;
    return false;
}
int main()
{
    int n;
    while(cin>>n,n){
        for(int i = 0;i < n;i++){
            scanf("%lf%lf%lf%lf",&l[i].p1.x,&l[i].p1.y,&l[i].p2.x,&l[i].p2.y);
        }

        int ans = 0;
        for(int i = 0;i < n;i++){
            for(int j = i+1;j < n;j++){
                if(judge1(l[i],l[j]) && judge2(l[i].p1,l[i].p2,l[j].p1,l[j].p2))ans++;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

发布了203 篇原创文章 · 获赞 70 · 访问量 5万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览