# HDU 1086 You can Solve a Geometry Problem too （判断线段相交）

You can Solve a Geometry Problem too
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9956 Accepted Submission(s): 4929

Problem Description
Many geometry（几何）problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments（线段）, please output the number of all intersections（交点）. You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point.

Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.

Output
For each case, print the number of intersections, and one line one case.

Sample Input

2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0

Sample Output

1
3

### 题解：

AC代码如下：

#include <iostream>
#include <cstdio>
#define eps 0.0000001
using namespace std;

struct po{ // point
double x,y;
po(){}
po(double _x,double _y){x = _x;y = _y;}
po operator -(po p2) {
return po(x-p2.x,y-p2.y);
}
double operator * (po p2){
return x*p2.y - p2.x*y;
}
};

struct line{
po p1,p2;
}l[110];

bool judge1(line l1,line l2){ // 快速排斥检验
return ( max(l1.p1.x,l1.p2.x) >= min(l2.p1.x,l2.p2.x) && max(l2.p1.x,l2.p2.x) >= min(l1.p1.x,l1.p2.x) && max(l1.p1.y,l1.p2.y) >= min(l2.p1.y,l2.p2.y) && max(l2.p1.y,l2.p2.y) >= min(l1.p1.y,l1.p2.y) );
}
bool judge2(po p1,po p2,po p3,po p4){// 跨立检验
double m = (p2 - p1) * (p3-p1);
double n = (p2 - p1) * (p4-p1);

double mm = (p4 - p3) * (p2 - p3);
double nn = (p4 - p3) * (p1 - p3);
if(m * n <= 0 && mm*nn <= 0) return true;
return false;
}
int main()
{
int n;
while(cin>>n,n){
for(int i = 0;i < n;i++){
scanf("%lf%lf%lf%lf",&l[i].p1.x,&l[i].p1.y,&l[i].p2.x,&l[i].p2.y);
}

int ans = 0;
for(int i = 0;i < n;i++){
for(int j = i+1;j < n;j++){
if(judge1(l[i],l[j]) && judge2(l[i].p1,l[i].p2,l[j].p1,l[j].p2))ans++;
}
}
printf("%d\n",ans);
}
return 0;
}



©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客