4.7哈夫曼树和哈夫曼编码
概念:
权:树中结点相关的数据
路径长度:从树中某个结点到另外一个结点之间的分支数目(经过的边数)
带权路径的长度:从树的根结点到任意结点的路径长度(经过的边数)与该结点上权值的乘积称为该结点的带权路径长度。
树中所有叶结点的带权路径长度之和称为该树的带权路径长度
哈夫曼树:含有N个带权叶子结点的二叉树,其中带权路径长度(WPL)最小的二叉树,也称为最优二叉树。
算法设计:
1)将这N个结点分别作为N棵树仅含一个结点的二叉数,构成森岭F。
2)构造一个新结点,并从F中选取两个根结点权值最小的树作为新结点的左、右子树,并且将新结点的权值置为左右子树上根结点的权值之和。
3)从F中删除刚才选出得两棵树,同时将新得到的树加入F中。
4)重复步骤2)和3),直至F中只剩下一颗树为止。
Notes:
1)每个初始结点最终都成为叶结点,并且权值越小的结点到根结点的路径长度越大。
2)构造过程中共新建了N-1个结点(双分支结点),因此哈夫曼树中结点总数为2N-1。
3)每次构造都选择2棵树作业新结点的孩子,因此哈夫曼树中不存在度为1的结点。
哈夫曼编码:
前缀编码:如果没有一个编码是另一个编码的前缀。
哈夫曼编码就是前缀编码。
特点:传输性能优化。