4.7哈夫曼树和哈夫曼编码

4.7哈夫曼树和哈夫曼编码

概念:

权:树中结点相关的数据

路径长度:从树中某个结点到另外一个结点之间的分支数目(经过的边数)

带权路径的长度:从树的根结点到任意结点的路径长度(经过的边数)与该结点上权值的乘积称为该结点的带权路径长度。

树中所有叶结点的带权路径长度之和称为该树的带权路径长度

[外链图片转存失败(img-NOmGdV7R-1566575829936)(C:\Users\liuhao\AppData\Roaming\Typora\typora-user-images\1566569176824.png)]

[外链图片转存失败(img-pFhIV2cF-1566575829937)(C:\Users\liuhao\AppData\Roaming\Typora\typora-user-images\1566569345247.png)]

哈夫曼树:含有N个带权叶子结点的二叉树,其中带权路径长度(WPL)最小的二叉树,也称为最优二叉树。

算法设计:

1)将这N个结点分别作为N棵树仅含一个结点的二叉数,构成森岭F。

2)构造一个新结点,并从F中选取两个根结点权值最小的树作为新结点的左、右子树,并且将新结点的权值置为左右子树上根结点的权值之和。

3)从F中删除刚才选出得两棵树,同时将新得到的树加入F中。

4)重复步骤2)和3),直至F中只剩下一颗树为止。

[外链图片转存失败(img-y0Dq8mSk-1566575829937)(assets/1566570106393.png)]

Notes:

1)每个初始结点最终都成为叶结点,并且权值越小的结点到根结点的路径长度越大。

2)构造过程中共新建了N-1个结点(双分支结点),因此哈夫曼树中结点总数为2N-1。

3)每次构造都选择2棵树作业新结点的孩子,因此哈夫曼树中不存在度为1的结点。

哈夫曼编码:

[外链图片转存失败(img-ovS0sLZc-1566575829938)(assets/1566575614208.png)]

前缀编码:如果没有一个编码是另一个编码的前缀。

哈夫曼编码就是前缀编码。

特点:传输性能优化。
[外链图片转存失败(img-HLPNMVOQ-1566575829938)(assets/1566575749487.png)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值