MIT 2023 深度学习1

        许多深度学习教程都是从这张图开始的,这是多层感知机的基础结构——一个神经元。一个神经元包含如下组成部分:输入、权重、偏置、激活函数。其中输入和权重很好理解,而偏置和损失函数需要结合数学定义来看。

         神经元从数学上可以被定义为

\hat y=g\left(w_{0}+X^TW \right )\\ where:X=\begin{bmatrix} x_{1}\\ \vdots\\ x_{m} \end{bmatrix},W=\begin{bmatrix} w_{1}\\ \vdots\\ w_{m} \end{bmatrix}

观察这个表达式可以发现,输入和权重组合是线性的,如果仅仅使用这两者进行计算,无论堆叠多少神经元,最终都只能表示输入的线性组合关系;但现实世界显然很难用变量的线性组合来描述,因而我们需要引入激活函数的概念。激活函数提供了神经网络的非线性特征,经典的激活函数有sigmoid、relu、tanh等,图像如下,

偏置这个概念与激活函数是绑定的,它提供了激活函数“激活”的条件。以relu这个激活函数为例,只有当X^TW+w_{0}>0时,该神经元的输出才不为0,即处于“激活”状态。在其余激活函数上也存在该性质——只有X^TW+w_{0}超过某一阈值时,神经元才会输出一个较显著的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值