【PFC 5.0】接触的定义与修改cmat &contact

文章介绍了PFC中ContactModelAssignmentTable(CMAT)的功能,包括设置默认接触类型、区分和修改不同接触模型,以及如何应用和恢复cmat设置。重点讲解了cmatdefault、contactgroupbehavior和cmatapply等命令的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Contact Model Assignment Table (CMAT)是PFC中用来模拟接触模型(可以是PFC内置模型,也可以是用户自定义的模型)的工具。接触模型在PFC模拟的过程中是非常重要的,如果不对接触模型进行定义,PFC会默认使用null model,此时不能承受力,也不能承受弯矩,可发生穿透。

1. 设置默认接触类型

cmat default : 除非指定了其他接触类型,否则cmat default命令将自动应用于所有适用type的接触。

2. 区分不同的接触模型

若要区分不同的接触模型,需要首先使用contact groupbehavior对接触进行分组。

contact groupbehavior and
cmat add 1 model hertz ... property ... range group glass
cmat add 2 model hertz ... property ... range group steel
cmat default type ball-ball model hertz ... property ...                         

建立上述接触模型后,在程序运行时将首先访问适用于slot 1的接触,其次访问slot 2,最后如果有不满足以上两个可选slot的接触,将会被分配default的接触类型。因此,

Slot 1的hertz模型适用组 group glass;

Slot 2的hertz模型适用组 group steel;

Default的hertz模型适用于剩余所有的球-球接触。

3. 更改已有的接触类型

cmat modify 1 model linearpbond ... property ... 

在cmat下修改接触类型和参数值,但是没有应用到已有的接触上,仅仅对之后新产生的接触分配linearpbond模型。

如果要对已有的接触进行修改,需要应用cmat apply来进行分配。(注意,如果这里不加range,仅仅使用cmat apply 命令,将会对所有已有的接触模型进行修改。)

cmat apply range group glass

Note: 对camt的任何修改都会影响未来新产生的接触。如果只想对已有的接触进行修改,而对新产生的接触还使用初始的接触模型,需要在cmat apply 之后恢复cmat的设置。这种修改是比较费力的。

使用contact commands只会对当前存在的接触产生影响,而不会改变新产生的接触对的接触模型,因此在这种情况下使用contact commands会更加方便。

contact model linearpbond range group glass
contact property ... 

 (转自知乎—戚大眼

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值