题目:
Say you have an array for which the ith element is the price of a given stock on dayi.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
第一道:
if(prices.size()<=1)
return 0;
int low = prices[0];
vector<int> maxpro;
int max = 0;
maxpro.push_back(0);
for(int j=1;j<prices.size();j++)
{
int tmp = prices[j]-low;
if(tmp > max)
max = tmp;
if(prices[j]<low)
low = prices[j];
maxpro.push_back(max);
}
int result = maxpro[prices.size()-1];
这里并不是将第二道题中的最大的两个局部利润值相加得到结果。这样是不对的。
我们知道:对于两个利润值中的单个的利润值,并不一定是一个递增序列所对应的max-min,可能是如第一题一样计算0~i之间的最大利润。
对于第二个利润值,则计算i+1~n-1之间的利润最大值。两者相加得到结果。
既然最多只能完成两笔交易,而且交易之间没有重叠,那么就divide and conquer。
设i从0到n-1,那么针对每一个i,看看在prices的子序列[0,...,i][i,...,n-1]上分别取得的最大利润(第一题的函数)即可。
这样初步一算,时间复杂度是O(n2)。
动态规划:
那就是第一步扫描,先计算出子序列[0,...,i]中的最大利润,用一个数组保存下来,那么时间是O(n)。
第二步是逆向扫描,计算子序列[i,...,n-1]上的最大利润,这一步同时就能结合上一步的结果计算最终的最大利润了,这一步也是O(n)。
所以最后算法的复杂度就是O(n)的。
具体实现:
class Solution {
public:
int maxProfit(vector<int> &prices) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(prices.size()<=1)
return 0;
int low = prices[0];
vector<int> maxpro;
int max = 0;
maxpro.push_back(0);
for(int j=1;j<prices.size();j++)
{
int tmp = prices[j]-low;
if(tmp > max)
max = tmp;
if(prices[j]<low)
low = prices[j];
maxpro.push_back(max);
}
int result = maxpro[prices.size()-1];
int high = prices[prices.size()-1];
max = 0;
for(int j=prices.size()-2;j>=0;j--)
{
int tmp = high-prices[j];
if(tmp>max)
max = tmp;
if(prices[j]>high)
high = prices[j];
if(maxpro[j]+max>result)
result = maxpro[j]+max;
}
return result;
}
};