自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(247)
  • 收藏
  • 关注

原创 Basic statistics - 17. The Chi-square goodness of fit test | and the difference to the z-test

?OE。

2025-12-23 17:54:04 723

原创 Basic statistics - 16. One-proportion Z-test and the corresponding confidence interval

Here is the formula for the , the test can be used to test if there is a significant difference between a proportion from a sample and a proportion according to the null hypothesis. is the sample proportion and is the proportion according to the null hypo

2025-12-22 17:42:21 658

原创 Basic statistics - 15. Variable and scales in statistics

【代码】Basic statistics - 15. Variable and scales in statistics。

2025-12-22 10:57:50 403

原创 Basic statistics - 14. The repeated-measures ANOVA | explained with a simple example

The。

2025-12-21 16:05:18 1003

原创 Basic statistics - 13. One-way ANOVA: the calculations - step by step

【代码】Basic statistics - 13. One-way ANOVA: the calculations - step by step。

2025-12-20 19:15:00 663

原创 Basic statistics - 12. One-way ANOVA Basics

【代码】Basic statistics - 12. One-way ANOVA Basics。

2025-12-20 18:04:28 661

原创 Basic statistics -11. The paired t-test | explained with a sample example

an。

2025-12-19 17:25:58 806

原创 Basic statistics - 10. The unpaired t-test | Independent samples t-test

【代码】Basic statistics - 09. The unpaired t-test | Independent samples t-test。

2025-12-19 16:04:13 794

原创 Basic statistic - 09. The basic steps of hypothesis testing

【代码】Basic Statistic - 09. The basic steps of hypothesis testing。

2025-12-19 14:41:15 701

原创 Basic statistics - 08. The degrees of freedom - explained with a simple example

If we would estimate the population standard deviation with the following formula the degrees of freedom is then equal to the total sample size -1. Because we first need to estimate the population mean value before we calculate the standard deviation.let’

2025-12-14 22:04:41 883

原创 Basic statistics - 07. The one-sample t-test and p-values

We would like to investigate the effect of a new diet, recruit six individuals from the population of interest that test the new diet for 4 weeks.Since we want to test the mean body weight has changed after the diet, our reference value is therefore zero.

2025-12-14 21:39:05 924

原创 Basic statistics - 06. The t-distribution

If you know the population standard deviation we can use this simple formula to calculate the 95 confidence interval …If you did not know the population standard deviation but when the sample size is large, for example greater than 100 we can estimate the

2025-12-14 21:02:49 961

原创 Basic statistics - 05. Confidence intervals

We have learned standard of mean in last notes, so how can we use it?we can use it to calculate a confidence interval.We will pretend that we don’t know the population mean in this example. Instead, we will here try to estimate it based on a sample from t

2025-12-14 16:58:34 744

原创 Basic statistics - 04. The standard error of the mean (SEM)

We take a new sample of four individuals from the population, the mean height of these for individuals is 170cm.Repeat the sampling 1000times so that we have in total 10000 samples means.If we make a histogram of all these 10000 mean values ,we see tha

2025-12-14 16:05:52 755

原创 Basic statistics - 03. The central limit theorem

Example:

2025-12-14 15:33:29 398

原创 Basic statistics - 02. The Normal distribution

examples:

2025-12-14 15:06:29 245

原创 Basic statistics - 01. Mean, Median, Mode, Range, interquartile range (IQR), Standard Deviation

均值会被极端值影响,但是中位数不会。

2025-12-14 14:12:03 386

原创 paper reading - 06. The language network as a natural kind within the broader landscape of the human

这段文献的核心内容探究人类大脑中语言网络(language network)的本质及其与其他认知系统的关系。按照文献组织的方式,每部分只凝练我个人关注或者认为重要的内容,详细的内容可以参考文献。

2025-10-31 10:19:04 1074

原创 paper reading - 08. The Brain Connectome for Chinese Reading

汉字的字形处理激活了一个比字母文字更广泛、更分散的网络,该网络除了经典的左侧语言区外,还显著地涉及右半球的多个额顶区域和枕颞区域,以应对其高视觉复杂性。但 VWFA 的精确侧化性仍然是该领域的一个悬而未决的问题。

2025-10-11 16:41:36 871

原创 paper reading -07. Testing for Dual Brain Processing Routes in Reading: A Direct Contrast of Chinese

支持通路分离: 尽管缘上回 (SMG) 的差异未达显著,但顶下小叶 (IPL) 和 颞上回 (STG) 对拼音的相对高激活,以及梭状回 (Fusiform Gyrus) 对汉字的高激活,共同支持了组装式和寻址式音韵过程在大脑中拥有相对独立的神经基础。颞中回的功能特化: 颞中回 (MTG) 前后部的分离激活是本研究的重要发现。它暗示了颞叶在复杂的语音和词汇处理中存在精细的功能特化,其中不同部分可能更侧重于处理组装式或寻址式的音韵信息。

2025-10-02 19:44:48 621

原创 paper reading - 05:The power of neural oscillations to inform sentence comprehension

该综述明确指出,神经振荡的各个频段并非孤立地工作,而是共同构成一个动态的、分层的系统来支持复杂的语言计算。从低频的 Theta 波段处理工作记忆负荷,到中频的 Alpha 波段调节注意力,再到 Beta 波段维持当前的认知背景,以及最高频的 Gamma 波段进行即时的预测匹配和语义整合,这些功能在时间上相互协调,共同完成了句子理解的复杂任务。

2025-09-21 21:21:07 1057

原创 汉字和拼音文字在处理通路和脑区差异的核心文献调研

要理解汉字与拼音(如汉语拼音、英语等表音文字的拼音系统)在处理通路和脑区激活上的差异,核心需先抓住两者的文字本质区别:汉字是 “意音文字”(字形既表义也部分表音,结构复杂、规则性弱),拼音是 “纯表音文字”(字形仅对应语音,字母 - 音素规则明确)—— 这种本质差异直接导致了 “从视觉输入到语义理解” 的加工逻辑和神经基础不同。处理通路:拼音靠 “规则化非词典通路” 主导(形→音→义),汉字靠 “整字词典通路” 主导(形→义,音可非必由);脑区:拼音依赖左颞顶区(规则语音转换),汉字依赖左中额回(整合枢纽

2025-09-21 12:53:35 1106

原创 paper reading - 03.The brain basis of language processing: from structure to function

本文的目的是描述句子理解背后的结构和功能神经网络,以及随着句子被感知这一过程如何随着时间的推移而演变。我们首先简要勾勒出构成句子理解过程的不同子过程的时间进程。然后,我们将定义大脑皮质语言功能的基本网络,并详细说明其神经解剖学结构。在此背景下,我们将描述理解过程中发生的不同过程,如声学-语音分析以及句法和语义过程。

2025-09-20 17:32:27 743

原创 显著电极筛选记录 - 检验方法以及矫正方法

摘要(147字) 本文探讨了脑电数据分析中显著电极筛选的关键问题。重点讨论了两种检验方法:独立样本检验(Mann-Whitney U)和配对检验(Wilcoxon),以及Holm-Bonferroni和FDR两种校正方法的适用场景。研究发现试次数量对结果影响显著:试次少会降低统计检验力,导致真实效应被掩盖,同时使Z值波动增大,影响连续时间筛选。建议试次较少时可适当降低阈值,并注意控制假阳性和假阴性。文章还强调了实验设计中静息态数据采集的重要性。

2025-09-17 22:37:41 666

原创 Paper reading - 03. Speech sequencing in the human precentral gyrus

摘要:本研究探讨了人类中央前回中部(mPrCG)在语音运动排序(speech-motor sequencing)中的关键作用。通过分析语音失用症(AOS)的临床证据,作者提出语音产生包含三个阶段:高级语音规划、语音运动排序和直接运动控制。研究采用颅内电极记录,通过FDR校正的Wilcoxon检验筛选显著电极,发现mPrCG是语音排序的核心脑区。进一步使用Friedman检验和聚类分析揭示持续活动电极存在动态功能分化,表明语音排序涉及多区域协同的时序加工。该研究为理解语音产生的神经机制提供了新视角,并对传统布

2025-09-07 22:53:05 862

原创 paper reading - 02. Implications of shared motor and perceptual activations on the sensorimotor cort

摘要 本研究探讨了运动皮层(SMC)在言语感知(阅读、聆听)与言语产生(尝试说话)任务中的共享神经机制及其差异。通过分析两名受试者的颅内电极数据发现: 共享激活:中前中央回(midPrCG)存在对三种任务均响应的共享电极,且这些电极与发音或手部运动编码区无重叠。 动态差异: 高频活动(HGA):尝试说话的HGA峰值最高,且任务前即出现激活,而感知任务仅在任务后激活。 低频活动:尝试说话伴随显著的theta/beta波抑制(去同步化),感知任务则表现为同步化。 跨任务解码:言语产生与感知任务在共享电极上存在部

2025-09-06 11:42:56 935

原创 Cross-frequency paper recoding - 01. The functional role of cross-frequency coupling

跨频耦合的功能作用 研究表明,不同频率的脑活动通过特定方式协同工作:低频振荡(如theta、alpha波)调控大范围神经网络的同步活动,而高频振荡(如gamma波)负责局部信息处理。跨频耦合(CFC)主要分为相位-振幅、相位-相位和振幅-振幅三种类型,其中theta/高频gamma的相位-振幅耦合最为显著。在认知任务中,不同脑区表现出频率特异性耦合模式:听觉任务中前额叶和颞叶呈现theta/gamma耦合,而视觉任务中枕叶则主要依赖alpha/gamma耦合。这种跨频协调机制使大脑能够同时处理宏观认知状态和

2025-09-04 16:18:36 858

原创 spicy.signal 报错解决

找到import的位置:将。

2025-01-07 11:21:43 727

原创 git上传大文件

git上传文件大小超过100MB

2025-01-01 10:12:51 343

原创 解决git push出现的报错:Permission denied (publickey)

解决git push问题

2024-12-17 14:52:17 679

原创 【Img_pipe for iElectrodes Localization】

A: 因为每一个被试的大脑都不相同,但最初的 T1图像将所有的被试的原点统一在图像的中心,在不同被试之间会存在差异,导致在重建大脑和标注电极在标准脑模板的时候,会出现很大误差,进行AC-PC对齐可以标准化所有的被试在一个基准上,这时再进行重建和标注任务时减少了个体化差异带来的误差。在开始之前,需要在每个被试的CT和T1目录下,mkdir acpc,将T1.nii文件移动到acpc下,并重命名为T1_orig.nii,再mkdir CT,将CT.ni移动到CT目录下。大脑重建可以改善图像的质量,

2024-07-20 14:54:19 1073

原创 【Brain Imaging, Crash Course】

This is 73-year-old previously healthy woman With weeks of memory difficulties, 10 days of increasing lethargy, 3 days of urinary incontinence, and now mild left sided weakness and rigidity Head CT was already conveniently done for you by the emergency dep

2024-07-18 12:16:49 1190

原创 【Neural signal processing and analysis zero to hero】- 2

why?

2024-07-17 19:29:30 1171

原创 【Neural signal processing and analysis zero to hero】- 1

doing visual based artifact rejection so that means that before you start analyzing, you can identify those data epics and simply remove them or make a decision about whether you think that it might be possible to isolate and separate out that artifact.he

2024-07-16 15:56:31 1097

原创 语音神经科学—08.Dissecting neural computations in the human auditory pathway using deep neural

本文使用一种新的 DNN 模型研究从听觉神经到语音皮层的神经编码,DNN 的分层表示与整个上行听觉系统(ascending auditory)的神经活动相关。并且深层的 DNN 与皮层的高阶活动相关,DNN 的计算与语音中的音素和音节结构 align。总之,作者将 DNN 模型计算和人类听觉神经响应相关联,增强 AI 模型的可解释性。,也可以直接去 b 站搜上科大刘泉影的课程进行学习~Q: 什么是上行听觉通路(ascending auditory pathway)?

2024-03-29 11:39:13 962

原创 语音神经科学—07.The DIVA model: A neural theory of speech acquisition and production

本文主要概述了最新的 DIVA 模型,该模型在添加了一个位于腹侧前运动皮层(ventral premotor cortex,)的右侧反馈控制映射(right-lateralized feedback control map),作者将会根据现大量的实验证据来讲述 DIVA 模型的各个组件以及他们之间的相互关系。关于该模型在研究和治疗沟通障碍(communication disorders)的应用也会被讲到,最后会对模型的学习过程进行概述。DIVA 是一个自适应神经网络,

2024-03-25 16:47:52 1478

原创 语音神经科学—06.Understanding rostral–caudal auditory cortex contributions to auditory perception

环境声音识别、声音产生的感觉运动引导和声音的空间处理涉及的神经系统之间的功能和解剖上的区别(functional and anatomical distinction)。而最近的研究则指出前部和后部听觉皮层存在计算上的差异,这可能解释了听觉处理中的功能差异。这些功能差异可能源自于前部和后部听觉皮层神经元(rostral and caudal auditory cortex)的响应时间和时间特性的差异,因此灵长类动物听觉途径的计算模型应该关注这些。

2024-03-24 18:37:56 1320

原创 分析方法—temporal receptive field(TRF)

总结来说,时间感受野其实就是一个 filter!课程中的描述—.(使用时间感受野与刺激进行卷积来描述)时间感受野一般是听觉计算中使用的,在视觉中,有另一种分析叫做空间感受野(spatial receptive fields)。回归权重(Regression weights)是指在回归分析中用于估计自变量与因变量之间关系的权重或系数。回归分析是一种统计方法,用于建立自变量与因变量之间的关联模型,并通过拟合数据来估计模型中的参数。在简单线性回归中,只有一个自变量与一个因变量之间的关系被建模。

2024-03-20 20:50:45 1438

原创 语音神经科学—05. Human cortical encoding of pitch in tonal and non-tonal languages

本文主要研究音调语言在不同母语的人群的大脑皮层中是如何被编码的,为了确定是否在语音感知上存在语言特异性,作者让母语为普通话和母语为英语的人都被动的听普通话和语言语音,并记录他们大脑皮层的活动。在普通话说话者中,观察到对普通话音调类别的敏感性增强。这表明他们的大脑对普通话语音的音调特征更为敏感。研究结果表明,语音感知依赖于一个共享的皮层听觉特征处理机制。然而,这个共享的特征处理机制可能会根据特定语言的统计特性而进行调整。

2024-03-20 16:03:32 1369

原创 语音神经科学—04.Speech Computations of the Human Superior Temporal Gyrus

本文献描述了颞上沟中语音声音表示依赖于基本的非线性和动态过程,例如分类(categorization)、归一化(normalization)上下文恢复(contextual restoration)和时间结构的提取。在颞上沟中,大量神经元的集体活动形成了特定的模式,这些模式代表了语音中的抽象音素(phoneme)和音节(syllable)单位。这些高阶的表示形式支持我们感知和理解语音。本综述介绍了颞上沟中音韵处理的多尺度、循环模型,强调了听觉系统和语言系统之间的关键接口。

2024-03-15 17:07:26 1546

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除