有中文题面就不发题意了。
似乎维护一个可持久化Trie和一个主席树就可以做了,但是仔细想想好像只需要一个可持久化Trie就完了。
脑补了一下Trie上找第k大和统计数个数,似乎是对了。
1A了。。
/* Pigonometry */
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 500005, maxk = 21, maxnode = maxn * maxk;
int root[maxn], triecnt, son[maxnode][2], sum[maxnode], bin[maxk];
inline int iread() {
int f = 1, x = 0; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return f * x;
}
inline void insert(int &pos, int c) {
int now = ++triecnt, last = pos; pos = now;
for(int i = maxk - 1; i >= 0; i--) {
son[now][0] = son[last][0]; son[now][1] = son[last][1];
sum[now] = sum[last] + 1;
bool ind = c & bin[i];
last = son[last][ind];
now = son[now][ind] = ++triecnt;
}
son[now][0] = son[last][0]; son[now][1] = son[last][1];
sum[now] = sum[last] + 1;
}
inline int query(int last, int now, int c) {
int ans = 0;
for(int i = maxk - 1; i >= 0; i--) {
bool ind = c & bin[i];
if(sum[son[now][ind ^ 1]] - sum[son[last][ind ^ 1]] > 0)
now = son[now][ind ^ 1], last = son[last][ind ^ 1], ans |= (ind ? 0 : bin[i]);
else
now = son[now][ind], last = son[last][ind], ans |= (ind ? bin[i] : 0);
}
return ans;
}
inline int findless(int last, int now, int c) {
int ans = 0;
for(int i = maxk - 1; i >= 0; i--) {
bool ind = c & bin[i];
if(ind) ans += sum[son[now][0]] - sum[son[last][0]];
if(sum[son[now][ind]] - sum[son[last][ind]] == 0) return ans;
now = son[now][ind]; last = son[last][ind];
}
ans += sum[now] - sum[last];
return ans;
}
inline int findkth(int last, int now, int k) {
int ans = 0;
for(int i = maxk - 1; i >= 0; i--) {
int tmp = sum[son[now][0]] - sum[son[last][0]];
if(tmp >= k) now = son[now][0], last = son[last][0];
else k -= tmp, now = son[now][1], last = son[last][1], ans |= bin[i];
}
return ans;
}
int main() {
bin[0] = 1;
for(int i = 1; i < maxk; i++) bin[i] = bin[i - 1] << 1;
int n = 0;
for(int T = iread(); T; T--) {
int opt = iread();
if(opt == 0) {
int x = iread(); n++;
insert(root[n] = root[n - 1], x);
}
else if(opt == 1) {
int l = iread(), r = iread(), x = iread();
printf("%d\n", query(root[l - 1], root[r], x));
}
else if(opt == 2) {
int k = iread(); n -= k;
triecnt = root[n + 1] - 1;
}
else if(opt == 3) {
int l = iread(), r = iread(), x = iread();
printf("%d\n", findless(root[l - 1], root[r], x));
}
else if(opt == 4) {
int l = iread(), r = iread(), k = iread();
printf("%d\n", findkth(root[l - 1], root[r], k));
}
}
return 0;
}