junior19的博客

0oOo0oO0oO0

HDU4757: Tree(可持久化Trie)

 Zero and One are good friends who always have fun with each other. This time, they decide to do something on a tree which is a kind of graph that there is only one path from node to node. First, Zero will give One an tree and every node in this tree has a value. Then, Zero will ask One a series of queries. Each query contains three parameters: x, y, z which mean that he want to know the maximum value produced by z xor each value on the path from node x to node y (include node x, node y). Unfortunately, One has no idea in this question. So he need you to solve it.
Input  There are several test cases and the cases end with EOF. For each case: 

  The first line contains two integers n(1<=n<=10^5) and m(1<=m<=10^5), which are the amount of tree’s nodes and queries, respectively. 

  The second line contains n integers a[1..n] and a[i](0<=a[i]<2^{16}) is the value on the ith node. 

  The next n–1 lines contains two integers u v, which means there is an connection between u and v. 

  The next m lines contains three integers x y z, which are the parameters of Zero’s query. 
Output  For each query, output the answer. 
Sample Input
3 2
1 2 2
1 2
2 3
1 3 1
2 3 2
Sample Output
3
0

题意:一颗带权树,M个询问,每个询问给出三个值u、v、w,问树上u到v路径中选一个点异或w的最大值是多少?

思路:用可持久化Tri记录每个点到根节点的历史信息,然后就是经典01字典树做法了。

# include <iostream>
# include <cstdio>
# include <algorithm>
# include <vector>
using namespace std;
const int maxn = 1e5+30;
int n, m;
vector<int>g[maxn];
int fa[maxn][20], a[maxn], deep[maxn];
int tree[maxn*35][2], son[maxn*35][2], root[maxn], cnt;
void build(int &x, int y, int val, int pos)
{
    if(pos<0) return;
    x = ++cnt;
    int tmp = !!(1<<pos&val);
    tree[x][tmp] = tree[y][tmp] + 1;
    tree[x][tmp^1] = tree[y][tmp^1];
    son[x][tmp^1] = son[y][tmp^1];
    build(son[x][tmp], son[y][tmp], val, pos-1);
}
int query(int x, int y, int z, int val, int sum, int pos)
{
    if(pos < 0) return sum;
    int tmp = !!(1<<pos&val);
    if(tree[x][tmp^1]+tree[y][tmp^1]-2*tree[z][tmp^1] > 0)
        return query(son[x][tmp^1], son[y][tmp^1], son[z][tmp^1], val, 1<<pos|sum, pos-1);
    else
        return query(son[x][tmp], son[y][tmp], son[z][tmp], val, sum, pos-1);
}
void dfs(int u, int pre)
{
    deep[u] = deep[pre] + 1;
    fa[u][0] = pre;
    for(int i=1; i<20; ++i) fa[u][i] = fa[fa[u][i-1]][i-1];
    build(root[u], root[pre], a[u], 15);
    for(int i=0; i<g[u].size(); ++i)
    {
        int v = g[u][i];
        if(v != pre) dfs(v, u);
    }
}
int lca(int v, int u)
{
    if(deep[v] > deep[u]) swap(u,v);
    for(int i=0; i<20; ++i)
        if(deep[u]-deep[v]>>i&1)
            u = fa[u][i];
    for(int i=19; ~i; --i)
        if(fa[v][i] != fa[u][i])
            v=fa[v][i], u=fa[u][i];
    return v==u?v:fa[v][0];
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        cnt = 0;
        for(int i=1; i<=n; ++i)
        {
            scanf("%d",&a[i]);
            g[i].clear();
        }
        for(int i=1, u, v; i<n; ++i)
        {
            scanf("%d%d",&u,&v);
            g[u].push_back(v);
            g[v].push_back(u);
        }
        dfs(1, 0);
        while(m--)
        {
            int u, v, w;
            scanf("%d%d%d",&u,&v, &w);
            int l = lca(u,v), ans;
            ans = max(w^a[l], query(root[u],root[v],root[l],w,0,15));
            printf("%d\n",ans);
        }
    }
    return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许可以随意转载。 https://blog.csdn.net/junior19/article/details/80345337
个人分类: 字典树
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

HDU4757: Tree(可持久化Trie)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭