【BZOJ3942】[Usaco2015 Feb]Censoring【AC自动机 / KMP】

本文介绍了一种使用AC自动机进行高效文本匹配的方法。通过预处理构建AC自动机,并利用失败指针加速匹配过程,当遇到匹配串时能够快速定位。文章提供了完整的C++实现代码,展示了如何插入字符串、获取失败指针以及执行匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目链接】

记录一个当前串长为i时,在AC自动机上的哪个节点。找到匹配串时,直接O(1)跳到那个节点就行了。

/* Pigonometry */
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn = 1000005, maxq = maxn;

int n, pos[maxn], q[maxq];
char s[maxn], str[maxn], ans[maxn];

int son[maxn][26], fail[maxn], acmcnt, flag[maxn];

inline void insert() {
	int now = 0, len = strlen(str);
	for(int i = 0; i < len; i++) {
		int &pos = son[now][str[i] - 'a'];
		if(!pos) pos = ++acmcnt;
		now = pos;
	}
	flag[now] = max(flag[now], len);
}

inline void getfail() {
	int h = 0, t = 0;
	for(int i = 0; i < 26; i++) if(son[0][i]) q[t++] = son[0][i];
	while(h != t) {
		int u = q[h++];
		for(int i = 0; i < 26; i++)
			if(!son[u][i]) son[u][i] = son[fail[u]][i];
			else {
				fail[q[t++] = son[u][i]] = son[fail[u]][i];
				flag[son[u][i]] = max(flag[son[u][i]], flag[fail[son[u][i]]]);
			}
	}
}

int main() {
	scanf("%s%d", s, &n);
	for(int i = 1; i <= n; i++) {
		scanf("%s", str);
		insert();
	}
	getfail();

	int now = 0, tot = 0, len = strlen(s);
	for(int i = 0; i < len; i++) {
		now = son[now][s[i] - 'a']; ans[tot] = s[i];
		pos[tot] = now; tot++;
		if(flag[now]) {
			tot -= flag[now];
			now = pos[tot - 1];
		}
	}
	ans[tot] = '\0';

	printf("%s\n", ans);
	return 0;
}


题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值