文章目录
一、函数表示法
这块,主要掌握两个技能,函数图像的画法,函数解析式的求法。
1、函数图像的画法
首先,要熟练掌握:反比例函数、一次函数、二次函数、
x
\sqrt{x}
x这四个函数的 图像。
在掌握两种特殊函数图像的画法:对勾函数,双刀函数
参考:对勾函数,双刀函数的函数图像
1.1、例题
这道题,其实是只用到了初中知识点。直接画出图像。
在利用根与图像交点的关系。求解即可。
2、求函数解析式
常用求法:
1、代入法。
2、换元法。
3、待定系数法。
4、方程组法。
5、特殊值法。
详情:重难点手册42/43页
2.1、例题
解析:
1、用代入法。
2、换元法。
3、待定系数法。
4、待定系数法。
观察上面两道题,可以发现:
x
×
1
x
=
1
,
(
x
−
1
)
+
(
1
−
x
)
=
0
x×\frac{1}{x}=1,(x-1)+(1-x)=0
x×x1=1,(x−1)+(1−x)=0,从而可以构建方程组解答。
给了f0的值,所以,想办法,利用这个条件消除f(x-y),从而,方程只包含fx。
3、映射
注意:映射与函数的区别
映射的像集中元素,可以没有原像。但是,值域中的函数值y,必须在定义域中有x与之对应。
二、函数单调性
1、单调区间的表示方法
2、常用的因式分解公式
一般判断单调性,都需要用到因式分解,这样,才可以判断符号。
1、平方差公式。
2、完全平方公式。
3、十字相乘法。
4、立方差公式。
5、立方和公式。
6、二次函数的配方法。
2.1、例题
解析:直接定义法证明,但是,要用到立方差公式和配方法
,从而确定符号。
3、单调性的证明方法
1、定义法。
设,区间中,任意x1>x2
,求f(x1)和f(x2)
的大小关系。
它的等价变形:
2、性质法
当单调区间相同时:
注意:只需要记忆f+g
即可。因为,g和-g
具有相反的单调性,所以,f-g=f+(-g)
。
3、函数乘积的单调性
4、复合函数的单调性
同增异减
4、特例
有些函数不具有单调性
5、例题
例题1
解析:
首先,像这种多个 小问的题目,一般都具有相互关联性。
就是说,后面的题目,后用到上一题的结论。
1、直接特殊值法,n=m=1.
2、利用f1=0,
n
∗
1
n
=
1
n*\frac{1}{n}=1
n∗n1=1
3、利用2的结论,结合定义法即可。
4、先给常数2套上f,发现f4=2,在利用2的结论,把f(x+2)-f(2x)变成
f
(
x
+
2
2
x
)
f(\frac{x+2}{2x})
f(2xx+2),得解。
5、较难,用到不等式性质。
先是想给2套上f,发现不行。
然后,只能是给两式同分母
,就是,想办法给
f
(
m
+
n
2
)
×
(
1
2
)
f(\frac{m+n}{2})×(\frac{1}{2})
f(2m+n)×(21),再利用已知性质求解。
例题2
解析:
此题,我是用函数图像性质求解的。
会发现,|x+1|的图像与|2x+a|的图像,最小值的交点在两个函数0点的中间,且函数值是两者的2倍。
例题3
较难
解析:函数图像法,a和1的位置关系,求出g(a)表达式,在根据单调性,求出最值。
例题4
解析:
要理解f(x)的含义,
x
<
g
(
x
)
等价于
g
(
x
)
−
x
>
0
x<g(x)等价于g(x)-x>0
x<g(x)等价于g(x)−x>0,从而求出定义域,在根据解析式,求出分段函数的最值。