高中数学刷题版:函数表示法与函数单调性[干货]

一、函数表示法

这块,主要掌握两个技能,函数图像的画法,函数解析式的求法。

1、函数图像的画法

首先,要熟练掌握:反比例函数、一次函数、二次函数、 x \sqrt{x} x 这四个函数的 图像。
在掌握两种特殊函数图像的画法:对勾函数,双刀函数
参考:对勾函数,双刀函数的函数图像

1.1、例题

在这里插入图片描述
这道题,其实是只用到了初中知识点。直接画出图像。
在利用根与图像交点的关系。求解即可。

2、求函数解析式

常用求法:
1、代入法。
2、换元法。
3、待定系数法。
4、方程组法。
5、特殊值法。
详情:重难点手册42/43页

2.1、例题

在这里插入图片描述
解析:
1、用代入法。
2、换元法。
3、待定系数法。
4、待定系数法。


在这里插入图片描述
观察上面两道题,可以发现:
x × 1 x = 1 , ( x − 1 ) + ( 1 − x ) = 0 x×\frac{1}{x}=1,(x-1)+(1-x)=0 x×x1=1(x1)+(1x)=0,从而可以构建方程组解答。
在这里插入图片描述在这里插入图片描述


在这里插入图片描述
给了f0的值,所以,想办法,利用这个条件消除f(x-y),从而,方程只包含fx。

3、映射

在这里插入图片描述
注意:映射与函数的区别
映射的像集中元素,可以没有原像。但是,值域中的函数值y,必须在定义域中有x与之对应。

二、函数单调性

1、单调区间的表示方法

在这里插入图片描述

2、常用的因式分解公式

一般判断单调性,都需要用到因式分解,这样,才可以判断符号。
1、平方差公式。
2、完全平方公式。
3、十字相乘法。
4、立方差公式。
在这里插入图片描述

5、立方和公式。
在这里插入图片描述
6、二次函数的配方法。

2.1、例题

在这里插入图片描述
解析:直接定义法证明,但是,要用到立方差公式和配方法,从而确定符号。
在这里插入图片描述

3、单调性的证明方法

1、定义法。
设,区间中,任意x1>x2,求f(x1)和f(x2)的大小关系。
它的等价变形:
在这里插入图片描述
2、性质法
在这里插入图片描述
当单调区间相同时:
在这里插入图片描述
注意:只需要记忆f+g即可。因为,g和-g具有相反的单调性,所以,f-g=f+(-g)

3、函数乘积的单调性
在这里插入图片描述
4、复合函数的单调性
同增异减
在这里插入图片描述

4、特例

有些函数不具有单调性
在这里插入图片描述

5、例题

例题1
在这里插入图片描述
解析:
首先,像这种多个 小问的题目,一般都具有相互关联性。
就是说,后面的题目,后用到上一题的结论。
1、直接特殊值法,n=m=1.
2、利用f1=0, n ∗ 1 n = 1 n*\frac{1}{n}=1 nn1=1
3、利用2的结论,结合定义法即可。
4、先给常数2套上f,发现f4=2,在利用2的结论,把f(x+2)-f(2x)变成 f ( x + 2 2 x ) f(\frac{x+2}{2x}) f(2xx+2),得解。
5、较难,用到不等式性质。
先是想给2套上f,发现不行。
然后,只能是给两式同分母,就是,想办法给 f ( m + n 2 ) × ( 1 2 ) f(\frac{m+n}{2})×(\frac{1}{2}) f(2m+n)×(21),再利用已知性质求解。


例题2
在这里插入图片描述
解析:
此题,我是用函数图像性质求解的。
会发现,|x+1|的图像与|2x+a|的图像,最小值的交点在两个函数0点的中间,且函数值是两者的2倍。
在这里插入图片描述


例题3
较难
在这里插入图片描述
解析:函数图像法,a和1的位置关系,求出g(a)表达式,在根据单调性,求出最值。


例题4
在这里插入图片描述
解析:
要理解f(x)的含义, x < g ( x ) 等价于 g ( x ) − x > 0 x<g(x)等价于g(x)-x>0 x<g(x)等价于g(x)x>0,从而求出定义域,在根据解析式,求出分段函数的最值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值