基准时间限制:1 秒 空间限制:131072 KB 分值: 40
难度:4级算法题
数组A和数组B,里面都有n个整数。数组C共有n^2个整数,分别是A[0] * B[0],A[0] * B[1] ......A[1] * B[0],A[1] * B[1]......A[n - 1] * B[n - 1](数组A同数组B的组合)。求数组C中第K大的数。
例如:A:1 2 3,B:2 3 4。A与B组合成的C包括2 3 4 4 6 8 6 9 12共9个数。
Input
第1行:2个数N和K,中间用空格分隔。N为数组的长度,K对应第K大的数。(2 <= N <= 50000,1 <= K <= 10^9) 第2 - N + 1行:每行2个数,分别是A[i]和B[i]。(1 <= A[i],B[i] <= 10^9)
Output
输出第K大的数。
Input示例
3 2 1 2 2 3 3 4
Output示例
9
李陶冶
(题目提供者)
看到50000要想到二分(nlog^2)(然而我想不到QAQ)
二分第k大的值为多少
然后枚举ai
二分出b中有多少个数*ai比k大
去check当前二分值是否可行
为了保证求出来的值一定是存在于c数组中
我们只要当条件满足时,使ans尽可能小即可
#include<cstdio>
#include<cstring>
#include<algorithm>
inline int read()
{
int ans=0;char t=getchar();
while(t<'0'||t>'9') t=getchar();
while(t>='0'&&t<='9') ans=ans*10+t-'0',t=getchar();
return ans;
}
const int N=50007;
int a[N],b[N];
int n,k;
inline long long check(long long x)
{
long long sum=0;
for(int i=1;i<=n;i++)
{
int ll=1,rr=n;
while(rr-ll>1)
{
int mid=(ll+rr)>>1;
long long ans=(long long)a[i]*b[mid];
if(ans>x) rr=mid;
else ll=mid+1;
}
long long ans=(long long)a[i]*b[ll];
if(ans>x) sum+=(n-ll+1);
else
{
ans=(long long)a[i]*b[rr];
if(ans>x) sum+=(n-rr+1);
}
}
return sum;
}
int main()
{
n=read(),k=read();
for(int i=1;i<=n;i++) a[i]=read(),b[i]=read();
std::sort(a+1,a+1+n);
std::sort(b+1,b+1+n);
long long ll=(long long)a[1]*b[1],rr=(long long)a[n]*b[n];
while(rr-ll>1)
{
long long mid=(ll+rr)>>1;
long long sum=check(mid);
if(sum>k-1) ll=mid+1;
else rr=mid;
}
if(check(ll)>k-1) printf("%lld\n",rr);
else printf("%lld\n",ll);
return 0;
}