51nod 1105 第K大的数

基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题
 收藏
 关注
数组A和数组B,里面都有n个整数。数组C共有n^2个整数,分别是A[0] * B[0],A[0] * B[1] ......A[1] * B[0],A[1] * B[1]......A[n - 1] * B[n - 1](数组A同数组B的组合)。求数组C中第K大的数。
例如:A:1 2 3,B:2 3 4。A与B组合成的C包括2 3 4 4 6 8 6 9 12共9个数。
Input
第1行:2个数N和K,中间用空格分隔。N为数组的长度,K对应第K大的数。(2 <= N <= 50000,1 <= K <= 10^9)
第2 - N + 1行:每行2个数,分别是A[i]和B[i]。(1 <= A[i],B[i] <= 10^9)
Output
输出第K大的数。
Input示例
3 2
1 2
2 3
3 4
Output示例
9
李陶冶  (题目提供者)
运行代码
 
提交代码


看到50000要想到二分(nlog^2)(然而我想不到QAQ)

二分第k大的值为多少

然后枚举ai

二分出b中有多少个数*ai比k大

去check当前二分值是否可行

为了保证求出来的值一定是存在于c数组中

我们只要当条件满足时,使ans尽可能小即可

#include<cstdio>
#include<cstring>
#include<algorithm>
inline int read()
{
	int ans=0;char t=getchar();
	while(t<'0'||t>'9')	t=getchar();
	while(t>='0'&&t<='9')	ans=ans*10+t-'0',t=getchar();
	return ans;
}
const int N=50007;
int a[N],b[N];
int n,k;
inline long long check(long long x)
{
	long long sum=0;
	for(int i=1;i<=n;i++)
	{
		int ll=1,rr=n;
		while(rr-ll>1)
		{
			int mid=(ll+rr)>>1;
			long long ans=(long long)a[i]*b[mid];
			if(ans>x)	rr=mid;
			else ll=mid+1;
		}
		long long ans=(long long)a[i]*b[ll];
		if(ans>x)	sum+=(n-ll+1);
		else 
		{
			ans=(long long)a[i]*b[rr];
			if(ans>x)	sum+=(n-rr+1);
		}
	}
	return sum;
}
int main()
{
	n=read(),k=read();
	for(int i=1;i<=n;i++)	a[i]=read(),b[i]=read();
	std::sort(a+1,a+1+n);
	std::sort(b+1,b+1+n);
	long long ll=(long long)a[1]*b[1],rr=(long long)a[n]*b[n];
	while(rr-ll>1)
	{
		long long mid=(ll+rr)>>1;
		long long sum=check(mid);
	    if(sum>k-1)	ll=mid+1;
		else rr=mid;
	}
	if(check(ll)>k-1)	printf("%lld\n",rr);
	else printf("%lld\n",ll);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值