题目:CF505B Mr. Kitayuta’s Colorful Graph
图论 - dfs - 并查集
刚开始想了一个很暴力的 dfs 做法,不知道行不行,看到标签之后才开始往并查集的方向想
若 有至少一条 u u u 到 v v v 的路径,使得路径上所有的边颜色都是 c c c,我们则称这个颜色 c c c 为 u , v u,v u,v 的连通色
我们开一个二维并查集, f [ i ] [ j ] f[i][j] f[i][j] 表示点 i i i 所在的连通色为 j j j 的集合中的祖先节点
上面可能有点抽象,下面来个举个栗子
对于两个点
u
,
v
u,v
u,v 和颜色
i
i
i,如果
f
[
u
]
[
i
]
=
f
[
v
]
[
i
]
f[u][i]=f[v][i]
f[u][i]=f[v][i],说明
u
,
v
u,v
u,v 在同一个连通色为
i
i
i 的集合中,那么 颜色
i
i
i 一定是
u
,
v
u,v
u,v 的连通色。
理解了并查集的意义,剩下的就很简单了
对于一条连接点 u , v u,v u,v,颜色为 c c c 的边,我们将点 u , v u,v u,v 在以颜色为连通色的并查集中合并。因为这条边保证了 c c c 是点 u , v u,v u,v 的连通色
最后,对于询问 u , v u,v u,v 的连通色个数,我们就枚举连通色 i i i,看看是否 f [ u ] [ i ] = f [ v ] [ i ] f[u][i]=f[v][i] f[u][i]=f[v][i] 并统计答案就可以了
时间复杂度 O ( n 2 ) O(n^2) O(n2)
#include<cstdio>
#include<iostream>
using namespace std;
const int Maxn=110,inf=0x3f3f3f3f;
int f[Maxn][Maxn];
int n,m,q;
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0' && ch<='9')s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return s*w;
}
int find(int x,int i) //二维并查集
{
if(f[x][i]==x)return x;
return f[x][i]=find(f[x][i],i);
}
int main()
{
// freopen("in.txt","r",stdin);
n=read(),m=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
f[i][j]=i; // 并查集初始化
for(int i=1;i<=m;++i)
{
int x=read(),y=read(),c=read();
f[find(x,c)][c]=find(y,c); // 维护并查集
}
q=read();
while(q--)
{
int x=read(),y=read(),tot=0;
for(int i=1;i<=m;++i)
if(find(x,i)==find(y,i))++tot;
printf("%d\n",tot);
}
return 0;
}
本文介绍了一种使用并查集解决图论问题的方法,针对CF505B题“Mr. Kitayuta’s Colorful Graph”,详细解释了如何通过二维并查集找到两点间具有相同颜色路径的数量。此方法适用于处理复杂的图连通性问题。
345

被折叠的 条评论
为什么被折叠?



