CodeForces - 505B Mr. Kitayuta's Colorful Graph(二维并查集。。)

Mr. Kitayuta has just bought an undirected graph consisting of n vertices and medges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.

Mr. Kitayuta wants you to process the following q queries.

In the i-th query, he gives you two integers — ui and vi.

Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.

Input

The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.

The next m lines contain space-separated three integers — aibi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j(ai, bi, ci) ≠ (aj, bj, cj).

The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.

Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.

Output

For each query, print the answer in a separate line.

Example
Input
4 5
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4
Output
2
1
0
Input
5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4
Output
1
1
1
1
2
Note

Let's consider the first sample.

 The figure above shows the first sample.
  • Vertex 1 and vertex 2 are connected by color 1 and 2.
  • Vertex 3 and vertex 4 are connected by color 3.
  • Vertex 1 and vertex 4 are not connected by any single color.
  原先我不敢相信,并查集还可以这么用,,仔细想想还真是的。。点还是点,只是多了对应边的的控制。

#include<stdio.h>
int n,m;
int f[200][200];
int getf(int v,int w)  //就是多了w,其他的都不变
{
    if(f[v][w]==v)
        return v;
    else
    {
        f[v][w]=getf(f[v][w],w);
        return f[v][w];
    }
}
void merge(int v,int u,int w)
{
    int t1=getf(v,w);
    int t2=getf(u,w);
    if(t1!=t2)
        f[t2][w]=t1;
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=1; i<=n; i++)
            for(int j=1; j<=m; j++)
                f[i][j]=i;
        int a,b,c,q,x,y;
        for(int i=0; i<m; i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            merge(a,b,c);
        }
        scanf("%d",&q);
        for(int i=1; i<=q; i++)
        {
            int ans=0;
            scanf("%d%d",&x,&y);
            for(int j=1; j<=m; j++)
            {
                int a=getf(x,j);
                int b=getf(y,j);
                if(a==b)ans++;
            }
            printf("%d\n",ans);
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值