CF920F SUM and REPLACE 题解

37 篇文章 0 订阅

题目链接

本题是很典型的一道 线段树/分块与暴力结合的题
与本题类似的还有如下几题:
SP2713 GSS4
P4145 上帝造题的七分钟2 / 花神游历各国
CF438D The Child and Sequence

个人本题是这几题中包装的最好的,也是唯一能交题解的一道

本题的修改操作非常不好处理,也不容易合并,比较难用传统的线段树方法结局。但是这里的修改操作有一个特点,就是有效的修改次数非常少

显然地,一个数 n n n 最多有 2 n 2\sqrt{n} 2n 个因数,也就是说题目中的 D ( i ) ≤ 2 i D(i)\le 2\sqrt i D(i)2i
那么,如果每次让 a i = D ( a i ) a_i=D(a_i) ai=D(ai),就相当于让 a i a_i ai 开了一个根号
这样的话, a i a_i ai 会快速地减小。假如 a i a_i ai 等于 1 0 6 10^6 106(题目中的最大值),那么在不超过 5 5 5 次操作后, a i a_i ai 就变成 2 2 2 了,并且以后无论修改多少次, a i a_i ai 永远是 2 2 2

那么,每次修改时我们可以暴力地在线段树中递归,如果当前递归到的区间的最大值 ≤ 2 \le 2 2,就停止递归,否则就递归到边界进行单点修改。时间复杂度 O ( n log ⁡ n ) \mathcal O (n \log n) O(nlogn)

为了美观以及方便理解,这里只贴出未开long long的代码

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int Maxn=3e5+10;
const int Maxm=Maxn<<2;
int sum[Maxm],maxv[Maxm];
int a[Maxn],f[1000010];
int n,m;
inline int read()
{
	int s=0,w=1;
	char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
	while(ch>='0' && ch<='9')s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
	return s*w;
}
inline void push_up(int k)
{
	sum[k]=sum[k<<1]+sum[k<<1|1];
	maxv[k]=max(maxv[k<<1],maxv[k<<1|1]);
}
void modify(int k,int l,int r,int x,int y)
{
	if(maxv[k]<=2)return;
	if(l==r)
	{
		a[l]=f[a[l]];
		sum[k]=maxv[k]=a[l];
		return;
	}
	int mid=(l+r)>>1;
	if(x<=mid)modify(k<<1,l,mid,x,y);
	if(mid<y)modify(k<<1|1,mid+1,r,x,y);
	push_up(k);
}
int query(int k,int l,int r,int x,int y)
{
	if(x<=l && r<=y)return sum[k];
	int mid=(l+r)>>1,ret=0;
	if(x<=mid)ret=query(k<<1,l,mid,x,y);
	if(mid<y)ret+=query(k<<1|1,mid+1,r,x,y);
	return ret;
}
void build(int k,int l,int r)
{
	if(l==r)
	{
		sum[k]=maxv[k]=a[l];
		return;
	}
	int mid=(l+r)>>1;
	build(k<<1,l,mid);
	build(k<<1|1,mid+1,r);
	push_up(k);
}
int main()
{
	// freopen("in.txt","r",stdin);
	n=read(),m=read();
	for(int i=1;i<=n;++i)
	a[i]=read();
	build(1,1,n);
	int cnt=1e6;
	for(int i=2;i<=cnt;++i)
	{
		for(int j=i;j<=cnt;j+=i)
		++f[j];
		++f[i];
	}
	while(m--)
	{
		int opt=read(),x=read(),y=read();
		if(opt==1)modify(1,1,n,x,y);
		else printf("%d\n",query(1,1,n,x,y));
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
06-01
这道题是一道典型的费用限制最短路题目,可以使用 Dijkstra 算法或者 SPFA 算法来解决。 具体思路如下: 1. 首先,我们需要读入输入数据。输入数据中包含了道路的数量、起点和终点,以及每条道路的起点、终点、长度和限制费用。 2. 接着,我们需要使用邻接表或邻接矩阵来存储图的信息。对于每条道路,我们可以将其起点和终点作为一个有向边的起点和终点,长度作为边权,限制费用作为边权的上界。 3. 然后,我们可以使用 Dijkstra 算法或 SPFA 算法求解从起点到终点的最短路径。在这个过程中,我们需要记录到每个点的最小费用和最小长度,以及更新每条边的最小费用和最小长度。 4. 最后,我们输出从起点到终点的最短路径长度即可。 需要注意的是,在使用 Dijkstra 算法或 SPFA 算法时,需要对每个点的最小费用和最小长度进行松弛操作。具体来说,当我们从一个点 u 经过一条边 (u,v) 到达另一个点 v 时,如果新的费用和长度比原来的小,则需要更新到达 v 的最小费用和最小长度,并将 v 加入到优先队列(Dijkstra 算法)或队列(SPFA 算法)中。 此外,还需要注意处理边权为 0 或负数的情况,以及处理无法到达终点的情况。 代码实现可以参考以下样例代码: ```c++ #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; const int MAXN = 1005, MAXM = 20005, INF = 0x3f3f3f3f; int n, m, s, t, cnt; int head[MAXN], dis[MAXN], vis[MAXN]; struct Edge { int v, w, c, nxt; } e[MAXM]; void addEdge(int u, int v, int w, int c) { e[++cnt].v = v, e[cnt].w = w, e[cnt].c = c, e[cnt].nxt = head[u], head[u] = cnt; } void dijkstra() { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[s] = 0; q.push(make_pair(0, s)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i != -1; i = e[i].nxt) { int v = e[i].v, w = e[i].w, c = e[i].c; if (dis[u] + w < dis[v] && c >= dis[u] + w) { dis[v] = dis[u] + w; q.push(make_pair(dis[v], v)); } } } } int main() { memset(head, -1, sizeof(head)); scanf("%d %d %d %d", &n, &m, &s, &t); for (int i = 1; i <= m; i++) { int u, v, w, c; scanf("%d %d %d %d", &u, &v, &w, &c); addEdge(u, v, w, c); addEdge(v, u, w, c); } dijkstra(); if (dis[t] == INF) printf("-1\n"); else printf("%d\n", dis[t]); return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值