有关区间的一类问题(以CF438D,CF920F为例)

关于区间修改与查询,有这样一类问题:区间取模,开根号等等。
这一类问题的特点是:每次修改之后,该区间的值都会大幅减小,最后变成某一定值。
以取模操作为例:每次操作后值都会至少减小一半,至多进行log2次操作。
证明:设原数为a,模数为b。

  1. 若a < b,此时不需要进行操作。
  2. 当a > b时:若b > a/2,则最终数为a-b < a/2;若b <= a/2,,因为a mod b < b,所以最终数 < a/2。

因此,我们可以记录一个区间最大值,当最大值大于模数时就修改,小于时就不必修改。这样就保证了复杂度

CF438D:区间查询和,区间取模,单点修改

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 100001;

struct node{
	int l, r, maxn;
	long long sum;
}t[MAXN << 2];

inline int read(){
	int k = 0; char ch = getchar();
	while(ch < '0' || ch > '9') ch = getchar();
	while(ch >= '0' && ch <= '9'){k = k*10 + ch - '0'; ch = getchar();}
	return k;
}

inline void pushup(int u){
	t[u].sum = t[u << 1].sum + t[u << 1 | 1].sum;
	t[u].maxn = max(t[u << 1].maxn, t[u << 1 | 1].maxn);
}

void build(int u, int L, int R){
	t[u].l = L, t[u].r = R;
	if(L == R){
		t[u].maxn = t[u].sum = read();
		return;
	}
	int mid = (L + R) >> 1;
	build(u << 1, L, mid);
	build(u << 1 | 1, mid + 1, R);
	pushup(u);
}

void change_block(int u, int L, int R, int MOD){
	if(t[u].maxn < MOD) return;
	if(t[u].l == t[u].r){
		t[u].maxn = t[u].sum = t[u].sum % MOD;
		return;
	}
	
	if(t[u << 1].r >= L) change_block(u << 1, L, R, MOD);
	if(t[u << 1 | 1].l <= R) change_block(u << 1 | 1, L, R, MOD);
	
	pushup(u);
}

void change_poi(int u, int x, int k){
	if(t[u].l == t[u].r){
		t[u].maxn = t[u].sum = k;
		return;
	}
	
	if(t[u << 1].r >= x) change_poi(u << 1, x, k);
	if(t[u << 1 | 1].l <= x) change_poi(u << 1 | 1, x, k);
	
	pushup(u);
}

long long query(int u, int L, int R){
	if(t[u].l >= L && t[u].r <= R)
		return t[u].sum;
	
	long long ans = 0;
	if(t[u << 1].r >= L) ans += query(u << 1, L, R);
	if(t[u << 1 | 1].l <= R) ans += query(u << 1 | 1, L, R);
	
	return ans;
}

int main(){
	int n = read(), m = read();
	build(1, 1, n);
	while(m--){
		int opt = read(), l, r, k, x;
		switch(opt){
			case 1:
				l = read(), r = read();
				printf("%lld\n", query(1, l, r));
				break;
			case 2:
				l = read(), r = read(), x = read();
				change_block(1, l, r, x);
				break;
			case 3:
				x = read(), k = read();
				change_poi(1, x, k);
		}
	}
	return 0;
}

CF920F:区间查询和,区间替换为该数约数个数(复习筛法)

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 300001;
const int MAX = 1000001;

int p[200000], notp[MAX], num[MAX], d[MAX], cnt;

struct node{
	int l, r;
	long long maxn, val;
}t[MAXN << 2];

inline int read(){
	int k = 0; char ch = getchar();
	while(ch < '0' || ch > '9') ch = getchar();
	while(ch >= '0' && ch <= '9'){k = k*10 + ch - '0'; ch = getchar();}
	return k;
}

void init(){
	d[1] = 1;
	for(int i = 2; i < MAX; i++){
		if(!notp[i]){
			p[++cnt] = i, d[i] = 2, num[i] = 1;
		}
		for(int j = 1; j <= cnt && (long long)i * (long long)p[j] < MAX; j++){
			notp[i * p[j]] = 1;
			if(i % p[j] == 0){
				num[i * p[j]] = num[i] + 1;
				d[i * p[j]] = d[i] / (num[i] + 1) * (num[i * p[j]] + 1);
				break;
			}
			d[i * p[j]] = d[i] * d[p[j]], num[i * p[j]] = 1;
		}
	}
}

inline void pushup(int u){
	t[u].val = t[u << 1].val + t[u << 1 | 1].val;
	t[u].maxn = max(t[u << 1].maxn, t[u << 1 | 1].maxn);
}

void build(int u, int L, int R){
	t[u].l = L, t[u].r = R;
	if(L == R){
		t[u].maxn = t[u].val = read();
		return;
	}
	int mid = (L + R) >> 1;
	build(u << 1, L, mid);
	build(u << 1 | 1, mid + 1, R);
	pushup(u);
}

void change(int u, int L, int R){
//	printf("t[%d].maxn = %d\n", u, t[u].maxn);
	if(t[u].maxn <= 2) return;
	if(t[u].l == t[u].r){
//		printf("val = %d\n", t[u].val);
		t[u].maxn = t[u].val = d[t[u].val];
//		printf("~val = %d\n", t[u].val);
		return;
	}
	
	if(t[u << 1].r >= L) change(u << 1, L, R);
	if(t[u << 1 | 1].l <= R) change(u << 1 | 1, L, R);
	
	pushup(u);
}

long long query(int u, int L, int R){
	if(t[u].l >= L && t[u].r <= R){
		return t[u].val;
	}
	long long ans = 0;
	if(t[u << 1].r >= L) ans += query(u << 1, L, R);
	if(t[u << 1 | 1].l <= R) ans += query(u << 1 | 1, L, R);
	return ans;
}

int main(){
	init();
	int n = read(), m = read();
//	for(int i = 1; i <= n; i++) printf("%d ", d[i]);
	build(1, 1, n);
	for(int i = 1; i <= m; i++){
		int opt = read(), l = read(), r = read();
		switch(opt){
			case 1: change(1, l, r); break;
			case 2: printf("%lld\n", query(1, l, r)); break;
		}
	}
	return 0;
}

总之,这类题分块能做,线段树一定条件下也能做
总觉得有点像segment tree beats的维护最大值,次大值的操作。。。(虽然我还没写过)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值