关于区间修改与查询,有这样一类问题:区间取模,开根号等等。
这一类问题的特点是:每次修改之后,该区间的值都会大幅减小,最后变成某一定值。
以取模操作为例:每次操作后值都会至少减小一半,至多进行log2次操作。
证明:设原数为a,模数为b。
- 若a < b,此时不需要进行操作。
- 当a > b时:若b > a/2,则最终数为a-b < a/2;若b <= a/2,,因为a mod b < b,所以最终数 < a/2。
因此,我们可以记录一个区间最大值,当最大值大于模数时就修改,小于时就不必修改。这样就保证了复杂度
CF438D:区间查询和,区间取模,单点修改
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 100001;
struct node{
int l, r, maxn;
long long sum;
}t[MAXN << 2];
inline int read(){
int k = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9'){k = k*10 + ch - '0'; ch = getchar();}
return k;
}
inline void pushup(int u){
t[u].sum = t[u << 1].sum + t[u << 1 | 1].sum;
t[u].maxn = max(t[u << 1].maxn, t[u << 1 | 1].maxn);
}
void build(int u, int L, int R){
t[u].l = L, t[u].r = R;
if(L == R){
t[u].maxn = t[u].sum = read();
return;
}
int mid = (L + R) >> 1;
build(u << 1, L, mid);
build(u << 1 | 1, mid + 1, R);
pushup(u);
}
void change_block(int u, int L, int R, int MOD){
if(t[u].maxn < MOD) return;
if(t[u].l == t[u].r){
t[u].maxn = t[u].sum = t[u].sum % MOD;
return;
}
if(t[u << 1].r >= L) change_block(u << 1, L, R, MOD);
if(t[u << 1 | 1].l <= R) change_block(u << 1 | 1, L, R, MOD);
pushup(u);
}
void change_poi(int u, int x, int k){
if(t[u].l == t[u].r){
t[u].maxn = t[u].sum = k;
return;
}
if(t[u << 1].r >= x) change_poi(u << 1, x, k);
if(t[u << 1 | 1].l <= x) change_poi(u << 1 | 1, x, k);
pushup(u);
}
long long query(int u, int L, int R){
if(t[u].l >= L && t[u].r <= R)
return t[u].sum;
long long ans = 0;
if(t[u << 1].r >= L) ans += query(u << 1, L, R);
if(t[u << 1 | 1].l <= R) ans += query(u << 1 | 1, L, R);
return ans;
}
int main(){
int n = read(), m = read();
build(1, 1, n);
while(m--){
int opt = read(), l, r, k, x;
switch(opt){
case 1:
l = read(), r = read();
printf("%lld\n", query(1, l, r));
break;
case 2:
l = read(), r = read(), x = read();
change_block(1, l, r, x);
break;
case 3:
x = read(), k = read();
change_poi(1, x, k);
}
}
return 0;
}
CF920F:区间查询和,区间替换为该数约数个数(复习筛法)
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 300001;
const int MAX = 1000001;
int p[200000], notp[MAX], num[MAX], d[MAX], cnt;
struct node{
int l, r;
long long maxn, val;
}t[MAXN << 2];
inline int read(){
int k = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9'){k = k*10 + ch - '0'; ch = getchar();}
return k;
}
void init(){
d[1] = 1;
for(int i = 2; i < MAX; i++){
if(!notp[i]){
p[++cnt] = i, d[i] = 2, num[i] = 1;
}
for(int j = 1; j <= cnt && (long long)i * (long long)p[j] < MAX; j++){
notp[i * p[j]] = 1;
if(i % p[j] == 0){
num[i * p[j]] = num[i] + 1;
d[i * p[j]] = d[i] / (num[i] + 1) * (num[i * p[j]] + 1);
break;
}
d[i * p[j]] = d[i] * d[p[j]], num[i * p[j]] = 1;
}
}
}
inline void pushup(int u){
t[u].val = t[u << 1].val + t[u << 1 | 1].val;
t[u].maxn = max(t[u << 1].maxn, t[u << 1 | 1].maxn);
}
void build(int u, int L, int R){
t[u].l = L, t[u].r = R;
if(L == R){
t[u].maxn = t[u].val = read();
return;
}
int mid = (L + R) >> 1;
build(u << 1, L, mid);
build(u << 1 | 1, mid + 1, R);
pushup(u);
}
void change(int u, int L, int R){
// printf("t[%d].maxn = %d\n", u, t[u].maxn);
if(t[u].maxn <= 2) return;
if(t[u].l == t[u].r){
// printf("val = %d\n", t[u].val);
t[u].maxn = t[u].val = d[t[u].val];
// printf("~val = %d\n", t[u].val);
return;
}
if(t[u << 1].r >= L) change(u << 1, L, R);
if(t[u << 1 | 1].l <= R) change(u << 1 | 1, L, R);
pushup(u);
}
long long query(int u, int L, int R){
if(t[u].l >= L && t[u].r <= R){
return t[u].val;
}
long long ans = 0;
if(t[u << 1].r >= L) ans += query(u << 1, L, R);
if(t[u << 1 | 1].l <= R) ans += query(u << 1 | 1, L, R);
return ans;
}
int main(){
init();
int n = read(), m = read();
// for(int i = 1; i <= n; i++) printf("%d ", d[i]);
build(1, 1, n);
for(int i = 1; i <= m; i++){
int opt = read(), l = read(), r = read();
switch(opt){
case 1: change(1, l, r); break;
case 2: printf("%lld\n", query(1, l, r)); break;
}
}
return 0;
}
总之,这类题分块能做,线段树一定条件下也能做
总觉得有点像segment tree beats的维护最大值,次大值的操作。。。(虽然我还没写过)