md语法-LaTex数学公式篇

LaTex常用语法

$ --> 行内公式

$z = x + y$ --> z = x + y z = x + y z=x+y

$$ --> 多行公式

$$
	x+y = z
	x-z = 0
	y+z = 3
$$

x + y = z x − z = 0 y + z = 3 x+y = z \\ x-z = 0 \\ y+z = 3 x+y=zxz=0y+z=3

\ --> 转义字符

$\$$ --> $$$

\\ --> 换行

$z = x + y \\ c = a * b$ --> z = x + y c = a ∗ b z = x + y \\ c = a * b z=x+yc=ab

\quad 空格

$a b$ --> a b a b ab
$a \ b$ --> a   b a \ b a b
$a \quad b$ --> a b a \quad b ab
$a \qquad b$ --> a b a \qquad b ab

_ --> 下标

$a_1$ --> a 1 a_1 a1

^ --> 上标

$a^1$ --> a 1 a^1 a1

{} 一组内容

$a_{11} = b^{\frac{1}{2}}$ --> a 11 = b 1 2 a_{11} = b^{\frac{1}{2}} a11=b21

\cdot 点乘

$z = x \cdot y$ --> z = x ⋅ y z = x \cdot y z=xy

\times叉乘

$z = x \times y$ --> z = x × y z = x \times y z=x×y

\div 除以

$z = x \div y$ --> z = x ÷ y z = x \div y z=x÷y

\sqrt 根号

算术平方根

$\sqrt x$ – > x \sqrt x x

其他

$\sqrt [n]x$ – > x n \sqrt [n]x nx

\vec 矢量

$ \vec{ab} \\ \overrightarrow{bc} $ --> $ \vec{ab}\ \overrightarrow{bc} $

\prod连乘

基本连乘

$\prod_a^b$ --> ∏ a b \prod_a^b ab

角标在上边和下边的连乘

$\prod \limits_{i = 1}^n$ --> ∏ i = 1 n \prod \limits_{i = 1}^n i=1n

\sum 连加

基本连加

$\sum _a^b$ --> ∑ a b \sum _a^b ab

角标在上边和下边的连加

$\sum \limits _{i = 1}^n$ --> ∑ i = 1 n \sum \limits _{i = 1}^n i=1n

\int 积分

基本积分

$\int _a^b$ --> ∫ a b \int _a^b ab

正负无穷积分

$\int _{-\infty}^{+\infty}$ --> ∫ − ∞ + ∞ \int _{-\infty}^{+\infty} +

\partial 偏导

$\partial x$ --> ∂ x \partial x x

\propto 正比于

$a \propto b$ --> a ∝ b a \propto b ab

\overline 上划线

$\overline {A \cdot B + B \cdot C}$ --> A ⋅ B + B ⋅ C ‾ \overline {A \cdot B + B \cdot C} AB+BC

\underline 下划线

$\underline {A \cdot B + B \cdot C}$ --> A ⋅ B + B ⋅ C ‾ \underline {A \cdot B + B \cdot C} AB+BC

\boxed 边框

$\boxed {x*y=z}$ --> x ∗ y = z \boxed {x*y=z} xy=z
$\fbox {x*y=z}$ --> x*y=z \fbox {x*y=z} x*y=z

\mathbf 加粗

$\boxed{\mathbf {x*y=z}}$ --> x ∗ y = z \boxed{\mathbf {x*y=z}} xy=z

\boldsymbol 倾斜加粗

$\boxed{\boldsymbol {x*y=z}}$ --> x ∗ y = z \boxed{\boldsymbol{x*y=z}} xy=z

比较运算符

\geq 大于等于

$a \geq b$ --> a ≥ b a \geq b ab

\leq 小于等于

$a \leq b$ --> a ≤ b a \leq b ab

\neq 不等于

$a \neq b$ --> a ≠ b a \neq b a=b

子集

\subset

$A \subset B$ --> A ⊂ B A \subset B AB

\not \subset

$A \not \subset B$ --> A ⊄ B A \not \subset B AB

\subseteq

$A \subseteq B$ --> A ⊆ B A \subseteq B AB

\subsetneq

$A \subsetneq B$ --> A ⊊ B A \subsetneq B AB

\subseteqq

$A \subseteqq B$ --> A ⫅ B A \subseteqq B AB

\subsetneqq

$A \subsetneqq B$ --> A ⫋ B A \subsetneqq B AB

\supset

$A \supset B$ --> A ⊃ B A \supset B AB
具体用法参照\subset

  • 3
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
一份不太简短的 LATEX 2ε 介绍LATEX[1] 是一种排版系统,它非常适用于生成高印刷质量的科技和数学 类文档。这个系统同样适用于生成从简单的信件到完整书籍的所有其他种 类的文档。LATEX 使用 TEX[2] 作为它的格式化引擎。 这份短小的介绍描述了 LATEX 2ε 使用,对 LATEX 的大多数应用来说应 该是足够了。参考文献 [1, 3] 对 LATEX 系统提供了完整的描述。 对大多数计算机,从个人计算机(PC)和 Mac 到大型的 UNIX 和 VMS 系统,LATEX 都有适用版本。在许多大学的计算机机房,你会发现系 统中已经安装了 LATEX 并能够使用。在 Local Guide [4] 中应该提供了关于 如何存储本地的 LATEX 安装的信息。如果你对如何入门有疑问,向提供这 个小册子的人咨询。这份文档的职责不是告诉你如何安装并设置一个 LATEX 系统,而是教你如何编写你的文档,使得它们可以被 LATEX 处理。 这份介绍分成了五个章节: 第一章 告诉你关于 LATEX 2ε 文档的基本结构。你也会了解一点 LATEX 的历 史。阅读这一章后,你应该对 LATEX 有了一个粗略的印象。这个印象 仅仅是一个框架,但是它可以使你整合在其他章节中提供的信息成为 一个完整的画面。 第二章 探究排版文档的细节。它解释了大部分基本的 LATEX 命令和环境。 在阅读完这一章之后,你就能够编写你的第一份文档了。 第三章 解释了如何使用 LATEX 排版公式。同时,大量的例子会帮助你理解 如何使用 LATEX 的一个主要能力。在这个章节的结尾,你会找到列写 了 LATEX 中所有可用的数学符号的表格。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
好的,以下是 LaTeX 数学公式语法大全: 1. 上下标:使用 ^ 表示上标,使用 _ 表示下标。例如:$x^2$ 表示 x 的平方,$a_{ij}$ 表示矩阵 A 的第 i 行第 j 列元素。 2. 分数:使用 \frac{分子}{分母} 表示分数。例如:$\frac{1}{2}$ 表示 1/2。 3. 根号:使用 \sqrt[n]{x} 表示 n 次方根号。例如:$\sqrt{2}$ 表示 2 的平方根,$\sqrt{8}$ 表示 8 的立方根。 4. 求和、积分:使用 \sum 和 \int 表示求和和积分。例如:$\sum_{i=1}^{n} i$ 表示 1 到 n 的整数之和,$\int_{0}^{1} x^2 dx$ 表示从 0 到 1 对 x 的平方进行积分。 5. 括号:使用 ( 和 ) 表示小括号,使用 [ 和 ] 表示中括号,使用 \{ 和 \} 表示大括号。例如:$(a+b)$ 表示 a 加 b,$[a,b]$ 表示区间 [a,b],$\{x|x>0\}$ 表示 x 大于 0 的集合。 6. 矩阵:使用 \begin{matrix}...\end{matrix} 表示矩阵。例如:$\begin{matrix}1 & 2 \\ 3 & 4\end{matrix}$ 表示一个 2 行 2 列的矩阵。 7. 向量:使用 \vec{x} 表示向量 x。例如:$\vec{a}$ 表示向量 a。 8. 上下括号:使用 \overline 和 \underline 表示上下括号。例如:$\overline{a+b}$ 表示 a+b 的上括号,$\underline{a+b}$ 表示 a+b 的下括号。 9. 省略号:使用 \dots 和 \cdots 表示省略号。例如:$1,2,\dots,n$ 表示 1 到 n 的整数,$a_1+a_2+\cdots+a_n$ 表示 a1 到 an 的和。 10. 其他符号:使用 \infty 表示无穷大,使用 \times 表示乘号,使用 \div 表示除号,使用 \neq 表示不等于,使用 \leq 和 \geq 表示小于等于和大于等于。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值