在 Markdown(.md)文件中写入各种漂亮的 LaTex公式

Markdown(.md)文件中写入各类漂亮的 LaTex公式

概述

Markdown 编辑器能够让使用者充分专注于文本写入,而不用特地去将时间放在文档的排版上,只需要在特定的地方做好标记,就能够得到我们想要的排版效果,这大大提高了写入的效率。

在写入时,对于理工科的文档编辑,有时候难免会碰到要写入公式的情况,那么如何在 Markdown 编辑器中快速地写入需要的公式呢?

markdown编辑器还是比较好用,支持基于MathJax编写LaTeX数学公式。LateX的数学公式有两种,一种是行内公式,即与文字在同一行,另一种是块级公式,可以单独成行。插入公式可以直接写,还是挺方便的。

1. 基础应用

行内公式

在 Markdown 语法中,基于 MathJax 编写 LaTeX 数学公式时,行内公式用一组$包裹,例如在 Markdown 编辑器中键入下面代码块中的$\alpha$,就能够得到其下方区块中的公式效果1

$\alpha$

α \alpha α

又或者写入复杂一点的公式:

$\alpha(n)=\gamma(n-1)=(n-1)!\forall n \in\mathbb N$

α ( n ) = γ ( n − 1 ) = ( n − 1 ) ! ∀ n ∈ N \alpha(n)=\gamma(n-1)=(n-1)!\forall n \in\mathbb N α(n)=γ(n1)=(n1)!nN

$\alpha(n)=\gamma(n-1)=(n-1)!\quad\forall n \in\mathbb N$

α ( n ) = γ ( n − 1 ) = ( n − 1 ) ! ∀ n ∈ N \alpha(n)=\gamma(n-1)=(n-1)!\quad\forall n \in\mathbb N α(n)=γ(n1)=(n1)!nN

通俗来讲,这类写在同一行内的公式称为行内公式。我们马上要介绍另一种公式——块级公式。但是实际上,在 Markdown 语法中用一组$包裹的行内公式也能够达到分行的效果,例如:

$\alpha(n)=\gamma(n-1)=(n-1)!\\\forall n \in\mathbb N$

α ( n ) = γ ( n − 1 ) = ( n − 1 ) ! ∀ n ∈ N \alpha(n)=\gamma(n-1)=(n-1)!\\\forall n \in\mathbb N α(n)=γ(n1)=(n1)!nN

这其中的差异可自行体会,也可留言讨论。

块级公式

$$ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $$

x = − b ± b 2 − 4 a c 2 a x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b24ac

$$ x=\dfrac{-b\mp\sqrt{b^2-4ac}}{2a} $$

x = − b ∓ b 2 − 4 a c 2 a x=\dfrac{-b\mp\sqrt{b^2-4ac}}{2a} x=2abb24ac

$ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $

$ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $

值得注意的是,上面我们通过二次函数求根公式来介绍键入块级公式的基本语法时,在后面又通过之前介绍的行内公式似乎是达到了一样的公式写入效果,那么行内公式与块级公式究竟有何区别呢?

不同的 Markdown 编辑器,甚至是同一个 Markdown 编辑器的不同版本之间,内联公式的语法格式都有些许的改动。在最新版(0.10.7)的 Typora 编辑器中,上面用一组 $$ 包裹的公式不是块级公式的语法,块级公式的语法是在新的一行通过键入 $$+Enter(回车键) 来写入块级公式。 例如

$$+Enter(回车键)

*键入回车键后会立马自动生成一个公式块*

$$
1 x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
$$

x = − b ± b 2 − 4 a c 2 a 公 式 块 在 区 块 中 的 显 示 效 果 (1) x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\qquad{公式块在区块中的显示效果}\tag 1 x=2ab±b24ac (1)

x = − b ± b 2 − 4 a c 2 a 在 非 区 块 区 域 中 的 显 示 效 果 (2) x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\qquad{在非区块区域中的显示效果}\tag 2 x=2ab±b24ac (2)

但是,值得注意的是,最新版本的编辑器中通过这种方式添加公式块后,添加公式块在 Markdown 文件中无法删除,因此使用公式块的时候得谨慎,否则目前只有丢弃先前文档的改动,而这一点对于那些在键入公式块之前未保存文档的人就很不友好了(仅对于 0.10.7 版本)。新版本(0.10.9)修复了这一 bug 。

行内公式 VS 块级公式

若是想在 Markdown 编辑器中写入求根公式,我们可以键入$x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$也可以键入$$x=\dfrac{-b\mp\sqrt{b^2-4ac}}{2a}$$,来达到一样的公式写入效果,而且公式在文档那个中的输出效果是一样了,除非对于多行的公式,我们在新的一行、同时 `$$` 后面键入了换行命令,才会以公式块的形式出现:
$$
x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
$$

若是想在 Markdown 编辑器中写入求根公式,我们可以键入 x = − b ± b 2 − 4 a c 2 a x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b24ac 也可以键入 x = − b ∓ b 2 − 4 a c 2 a x=\dfrac{-b\mp\sqrt{b^2-4ac}}{2a} x=2abb24ac ,来达到一样的公式写入效果,而且公式在文档那个中的输出效果是一样了,除非对于多行的公式,我们在新的一行、同时 $$ 后面键入了换行命令,才会以公式块的形式出现:
x = − b ± b 2 − 4 a c 2 a x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b24ac

  • 若是想在 Markdown 编辑器中写入求根公式,我们可以键入 x = − b ± b 2 − 4 a c 2 a x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b24ac 也可以键入 x = − b ∓ b 2 − 4 a c 2 a x=\dfrac{-b\mp\sqrt{b^2-4ac}}{2a} x=2abb24ac ,来达到一样的公式写入效果,而且公式在文档那个中的输出效果是一样了,除非对于多行的公式,我们在新的一行、同时 $$ 后面键入了换行命令,才会以公式块的形式出现:

x = − b ± b 2 − 4 a c 2 a x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b24ac

公式内的’换行符’

不同的 Markdown 编辑器,甚至是同一个 Markdown 编辑器的不同版本之间,内联公式的语法格式都有些许的改动。最新版(0.10.9)的 Typora 编辑器中,可以通过 \\ 来实现公式的换行,例如

$a+b=c,ab=d$

a + b = c , a b = d a+b=c,ab=d a+b=c,ab=d

$a+b=c \ ,ab=d$ *`空格+\+空格`表示的是间隔符号*

a + b = c , a b = d a+b=c,ab=d a+b=c,ab=d

在一组 $ 标记的公式中,一个单独 \ 和空格符号的键入可以表示间隔符号,但是 \\ 则可以用来标记换行。

$a+b=c\\ab=d$

a + b = c a b = d a+b=c\\ab=d a+b=cab=d

上标与下标

编写 LaTex 公式时所用的 Mathjax 语法中,^是上标,_是下标,这一点要与编辑器的上下标区分开来。Markdown 自身有自己的扩展语法,比如我们用到写入公式时所用的正是 Markdown 扩展语法中的内联公式 $\LaTex$,而在 Markdown 扩展语法中包含得有上下标的写入,因此要将公式的上下标与 Markdown 扩展语法的上下标区分开来。

同时在 Mathjax 语法中,当上下标多于一个字符时,则要使用 {} 来包裹成一个整体,而且上下标是可以嵌套的(即对于上下标的字母或符号还可以使用上下标)。

$x^{2^{n-1}}$

x 2 n − 1 x^{2^{n-1}} x2n1

$T_n-T_{n-1}=2^{n-2}$

T n − T n − 1 = 2 n − 2 T_n-T_{n-1}=2^{n-2} TnTn1=2n2

分数

$\frac{分子}{分母}$

分 子 分 母 \frac{分子}{分母}

$\frac{\pm b}{2a}$

± b 2 a \frac{\pm b}{2a} 2a±b

根号

开平方根是用 \sqrt来标记,开立方根用 \sqrt[3]来标记,以此类推,开 n 次方根则是用 \sqrt[n]来标记,例如

$\sqrt x$

x \sqrt x x

$\sqrt[3] y$

y 3 \sqrt[3] y 3y

$\sqrt[n] z$

z n \sqrt[n] z nz

同时根号是可以嵌套使用的,但是必须用 {} 包裹起来,例如

$\sqrt{\sqrt[3] x}$

x 3 \sqrt{\sqrt[3] x} 3x

$\sqrt{{\sqrt[3] x}+\sqrt[n] z}$

x 3 + z n \sqrt{{\sqrt[3] x}+\sqrt[n] z} 3x +nz

$\sqrt{{\sqrt[3] x}}+\sqrt[n] z$

x 3 + z n \sqrt{{\sqrt[3] x}}+\sqrt[n] z 3x +nz

矢量

矢量用 \vec 来标记,例如

$\vec n$

n ⃗ \vec n n

$\vec a\cdot\vec b=0$

a ⃗ ⋅ b ⃗ = 0 \vec a\cdot\vec b=0 a b =0

当矢量中多于一个字符时,则要使用 {} 来包裹成一个整体,例如

$\vec {OP}$

O P ⃗ \vec {OP} OP

$\vec{a}\cdot\vec{b}=0$

a ⃗ ⋅ b ⃗ = 0 \vec{a}\cdot\vec{b}=0 a b =0

省略号

数学公式中常见的省略号有三种,一种是与文本底线的对齐 \ldots、与文本中线对齐 \cdots 及竖直的省略号 \vdots。例如:

$f(x_1,x_2,\ldots,x_n) = x_1^2 + x_2^2 + \cdots +x_n^2$

f ( x 1 , x 2 , … , x n ) = x 1 2 + x 2 2 + ⋯ + x n 2 f(x_1,x_2,\ldots,x_n) = x_1^2 + x_2^2 + \cdots +x_n^2 f(x1,x2,,xn)=x12+x22++xn2

$y_1=a_1 x_1+a_1 x_2+ \cdots +a_1 x_n\\\vdots\\\y_2=a_2 x_1+a_2 x_2+ \cdots +a_2 x_n$

y 1 = a 1 x 1 + a 1 x 2 + ⋯ + a 1 x n ⋮ y 2 = a 2 x 1 + a 2 x 2 + ⋯ + a 2 x n y_1=a_1 x_1+a_1 x_2+ \cdots +a_1 x_n\\\vdots\\y_2=a_2 x_1+a_2 x_2+ \cdots +a_2 x_n y1=a1x1+a1x2++a1xny2=a2x1+a2x2++a2xn

间隔符号

如果想要在公式中的两个字母之间添加一段间隔,可以使用 \+空格;或者\quad 以及 \qquad 来标记。他们增加的空间越来越大。例如:

$x\ y$

x   y x\ y x y

$x\quad y$

x y x\quad y xy

$x\qquad y$

x y x\qquad y xy

可以看出这三种写入方式所呈现的效果是——间隔依次增大

括号

公式中是可以直接使用括号的,如圆括号(),方括号[] 及大括号{},但是与此同时如果直接使用这些括号的话,这些括号是不会随着字母的改变而改变的,尤其是在中文输入法下面键入的括号,例如

$(x\pm y)$,$(\frac{\pm y}{x})$

( x ± y ) (x\pm y) x±y, ( ± y x ) (\frac{\pm y}{x}) x±y

英文输入法下面键入括号,现在会随着公式内字母的大小有所变化,但是变化后的括号大小还未达到包裹公式的效果,例如

$(x\pm y)$,$[x\pm y]$,${x\pm y}$

( x ± y ) (x\pm y) (x±y)

$(\frac{\pm y}{x})$,$[\frac{\pm y}{x}]$,${\frac{\pm y}{x}}$

( ± y x ) (\frac{\pm y}{x}) (x±y), [ ± y x ] [\frac{\pm y}{x}] [x±y], ± y x {\frac{\pm y}{x}} x±y

$(\frac{\pm y^{2^n}}{x})$,$[\frac{\pm y^{2^n}}{x}]$,${\frac{\pm y^{2^n}}{x}}$

( ± y 2 n x ) (\frac{\pm y^{2^n}}{x}) (x±y2n), [ ± y 2 n x ] [\frac{\pm y^{2^n}}{x}] [x±y2n], ± y 2 n x {\frac{\pm y^{2^n}}{x}} x±y2n

如果想要括号的大小能够包裹公式,这时侯可以使用\left\right来标记这个括号。例如:

$\left(\frac{\pm y}{x}\right)$,$\left[\frac{\pm y}{x}\right]$

( ± y x ) \left(\frac{\pm y}{x}\right) (x±y), [ ± y x ] \left[\frac{\pm y}{x}\right] [x±y]

$\left(\frac{\pm y^{2^n}}{x}\right)$,$\left[\frac{\pm y^{2^n}}{x}\right]$

( ± y 2 n x ) \left(\frac{\pm y^{2^n}}{x}\right) (x±y2n), [ ± y 2 n x ] \left[\frac{\pm y^{2^n}}{x}\right] [x±y2n]

偏导数

偏导数用 \partial 标记,例如

$\frac{\partial u}{\partial x}$ , $\frac{\partial f(x,y)}{\partial x}$

∂ u ∂ x \frac{\partial u}{\partial x} xu , ∂ f ( x , y ) ∂ x \frac{\partial f(x,y)}{\partial x} xf(x,y)

条件偏导

$\left.\frac{\partial f(x,y)}{\partial x}\right |_{x=0}$

∂ f ( x , y ) ∂ x ∣ x = 0 \left.\frac{\partial f(x,y)}{\partial x}\right |_{x=0} xf(x,y)x=0

大括号右多行赋值

多行赋值,比如分段函数等,需要在不同的区间对函数赋值,例如

$
P(x|Pa_x)= 
\left \{\begin{array}{cc}
1, &x = f(Pa_x)\\
0, & other\ values
\end{array}\right.$

$
P(x|Pa_x)=
\left {\begin{array}{cc}
1, &x = f(Pa_x)\
0, & other\ values
\end{array}\right.$

需要注意的是,上面这种写法在 Markdown 语法下是支持的,但是当使用 Pandoc 导出 .docx 格式的文档时,不支持显示这种写法,应当使用如下的语法

$
P(x|Pa_x)=\begin{cases} 
		1, & x=f(Pa_{x})\\ 
		0, & other\ values 
	\end{cases}$

$
P(x|Pa_x)=\begin{cases}
1, & x=f(Pa_{x})\
0, & other\ values
\end{cases}$

但是上面的写法其实还是采用的行内公式的写法,到目前为止,行内公式与块级公式的区别还不大,我们后面会介绍行内公式与块级公式在效果上的区别,不过我们这里先用块级公式写入一下上面的公式,例如

$$
P(x|Pa_x)=\begin{cases} 
1, & x=f(Pa_{x})\\ 
0, & other\ values\\
\end{cases}
$$

P ( x ∣ P a x ) = { 1 , x = f ( P a x ) 0 , o t h e r   v a l u e s P(x|Pa_x)=\begin{cases} 1, & x=f(Pa_{x})\\ 0, & other\ values \end{cases} P(xPax)={1,0,x=f(Pax)other values

迪利克雷函数

$$
D(x)=\begin{cases}
1,x为有理数\\
0,x为无理数\\
\end{cases}
$$

D ( x ) = { 1 ,   x   为 有 理 数 0 ,   x   为 无 理 数 D(x)=\begin{cases} 1,\ x\ 为有理数\\ 0,\ x\ 为无理数\\ \end{cases} D(x)={1, x 0, x 

分段函数

$$
f[\phi(x)]=\begin{cases}
2-\phi(x),\ \phi(x)\leq 0\\
\phi(x)+2,\ \phi(x)>0\\
\end{cases}
$$

f [ ϕ ( x ) ] = { 2 − ϕ ( x ) ,   ϕ ( x ) ≤ 0 ϕ ( x ) + 2 ,   ϕ ( x ) > 0 f[\phi(x)]=\begin{cases} 2-\phi(x),\ \phi(x)\leq 0\\ \phi(x)+2,\ \phi(x)>0\\ \end{cases} f[ϕ(x)]={2ϕ(x), ϕ(x)0ϕ(x)+2, ϕ(x)>0

2. 运算符

关系运算符

± \pm ± :$\pm$
× \times × :$\times$
÷ \div ÷ :$\div$
∣ \mid :$\mid$
∤ \nmid :$\nmid$
≠ \neq = :$\neq$
≤ \leq :$\leq$
≥ \geq :$\geq$
≈ \approx : $\approx$
≡ \equiv :$\equiv$
∑ \sum :$\sum$
∗ \ast :$\ast$
∏ \prod :$\prod$
⊙ \odot :$\odot$
⨀ \bigodot :$\bigodot$

集合运算符

∈ \in :$\in$
∉ \notin / :$\notin$
⊂ \subset :$\subset$
⊃ \supset :$\supset$
⊆ \subseteq :$\subseteq$
⊇ \supseteq :$\supseteq$
⋃ \bigcup :$\bigcup$
⋂ \bigcap :$\bigcap$
∪ \cup :$\cup$
∪ \cup :$\cup$
∅ \emptyset :$\emptyset$
⋁ \bigvee :$\bigvee$
⋀ \bigwedge :$\bigwedge$
∨ \vee :$\vee$
∧ \wedge :$\wedge$

逻辑运算符

∵ \because :$\because$
∴ \therefore :$\therefore$
∀ \forall :$\forall$
∃ \exists :$\exists$
≠ \not= = :$\not=$
⊄ \not \subset :$\not \subset$

对数运算符

log ⁡ \log log :$\log$
lg ⁡ \lg lg : $\lg$
ln ⁡ \ln ln :$\ln$

三角运算符

∠ \angle :$\angle$
⊥ \bot :$\bot$
6 0 ∘ 60^\circ 60 :$60^\circ$
sin ⁡ \sin sin :$\sin$
tan ⁡ \tan tan :$\tan$

微积分运算符

′ \prime :$\prime$
∫ \int :$\int$
∬ \iint :$\iint$
∭ \iiint :$\iiint$
∮ \oint :$\oint$
∞ \infty :$\infty$
lim ⁡ \lim lim :$\lim$
∇ \nabla :$\nabla$

3. 特殊符号

希腊字母

符号语法符号语法符号语法
A \Alpha A, α \alpha α$\Alpha$,$\alpha$ I \Iota I, ι \iota ι$\Iota$,$\iota$ P \Rho P, ρ \rho ρ$\Rho$,$\rho$
B \Beta B, β \beta β$\Beta$,$\beta$ K \Kappa K, κ \kappa κ$\Kappa$,$\kappa$ Σ \Sigma Σ, σ \sigma σ$\Sigma$,$\sigma$
Γ \Gamma Γ, γ \gamma γ$\Gamma$,$\gamma$ Λ \Lambda Λ, λ \lambda λ$\Lambda$,$\lambda$ T \Tau T, τ \tau τ$\Tau$,$\tau$
Δ \Delta Δ, δ \delta δ$\Delta$,$\delta$ M \Mu M, μ \mu μ$\Mu$,$\mu$ Υ \Upsilon Υ, υ \upsilon υ$\Upsilon$,$\upsilon$
E \Epsilon E, ϵ \epsilon ϵ$\Epsilon$,$\epsilon$ N \Nu N, ν \nu ν$\Nu$,$\nu$ Φ \Phi Φ, ϕ \phi ϕ$\Phi$,$\phi$
Z \Zeta Z, ζ \zeta ζ$\Zeta$,$\zeta$ Ξ \Xi Ξ, ξ \xi ξ$\Xi$,$\xi$ X \Chi X, χ \chi χ$\Chi$,$\chi$
H \Eta H, η \eta η$\Eta$,$\eta$ O \Omicron O, ο \omicron ο$\Omicron$, $\omicron$ Ψ \Psi Ψ, ψ \psi ψ$\Psi$,$\psi$
Θ \Theta Θ, θ \theta θ$\Theta$,$\theta$ Π \Pi Π, π \pi π$\Pi$,$\pi$ Ω \Omega Ω, ω \omega ω$\Omega$,$\omega$
ε \varepsilon ε$\varepsilon$ ϱ \varrho ϱ$\varrho$ ς \varsigma ς$\varsigma$
ϑ \vartheta ϑ$\vartheta$ ϖ \varpi ϖ$\varpi$

箭头符号

↓ \downarrow :$\downarrow$
↑ \uparrow :$\uparrow$
⇑ \Uparrow :$\Uparrow$
⇓ \Downarrow :$\Downarrow$
→ \rightarrow :$\rightarrow$
← \leftarrow :$\leftarrow$
⇒ \Rightarrow :$\Rightarrow$
⇐ \Leftarrow :$\Leftarrow$
⟵ \longleftarrow :$\longleftarrow$
⟸ \Longleftarrow :$\Longleftarrow$

帽子符号

y ^ \hat{y} y^ :$\hat{y}$
y ˇ \check{y} yˇ :$\check{y}$
x ˉ \bar{x} xˉ :$\bar{x}$

连线符号

a + b + c + d + e ‾ \overline{a+b+c+d+e} a+b+c+d+e :$\overline{a+b+c+d+e}$
a + b + c + d + e ‾ \underline{a+b+c+d+e} a+b+c+d+e :$\underline{a+b+c+d+e}$
a + b + c + d ⏟ 3.0 + e ⏞ 5.0 \overbrace{a+\underbrace{b+c+d} _{3.0}+e }^{5.0} a+3.0 b+c+d+e 5.0:$\overbrace{a+\underbrace{b+c+d} _{3.0}+e }^{5.0}$

特殊字符

KaTeX parse error: Undefined control sequence: \S at position 1: \̲S̲

4. 高级应用

方程式 {align}

我们经常需要一组整齐(并且自动对齐)的方程式,这个可以通过$\begin{align}\end{align}$来创造一组对齐的方程式,用 \\ 命令来断行,例如

下面我们先通过行内公式的语法形式,尝试写入一组左对齐的方程式,例如

$dm=\lambda dl\qquad{\left(dl为圆弧元,\lambda为线密度(\lambda=\frac{m}{2\pi R})\right)}\\dJ=R^2dm=\lambda R^2dl\\J=\int^{2\pi R}_{0}\lambda R^2dl=mR^3$

d m = λ d l ( d l 为 圆 弧 元 , λ 为 线 密 度 ( λ = m 2 π R ) ) d J = R 2 d m = λ R 2 d l J = ∫ 0 2 π R λ R 2 d l = m R 3 dm=\lambda dl\qquad{\left(dl为圆弧元,\lambda为线密度(\lambda=\frac{m}{2\pi R})\right)}\\dJ=R^2dm=\lambda R^2dl\\J=\int^{2\pi R}_{0}\lambda R^2dl=mR^3 dm=λdl(dlλ线(λ=2πRm))dJ=R2dm=λR2dlJ=02πRλR2dl=mR3

上面这种连写的方式,不利于写公式文本的书写及公式内容的检查(除非键入公式时毫无错误),如果想要键入分行效果的一组公式,则可以通过断行命令键入如下代码

$\begin{align}  
&dm=\lambda dl\qquad{\left(dl为圆弧元,\lambda为线密度(\lambda=\frac{m}{2\pi R})\right)}\\  
&dJ=R^2dm=\lambda R^2dl\\  
&J=\int^{2\pi R}_{0}\lambda R^2dl=mR^3
\end{align}$

KaTeX parse error: No such environment: align at position 7: \begin{̲a̲l̲i̲g̲n̲}̲ &dm=\lambda …

通过对比两种代码,能够发现对于括号 \left(...\right) 、括号内的分数大小及积分符号的大小会有一点区别,而对于写入这类复杂的公式时,行类公式于块级公式的效果才正式出现了。这是在 Makdown 编辑器中写入一组左对齐的方程式。如果想要写入一组整齐且居中公式,则需要使用公式块,例如

$$
dm=\lambda dl\qquad{\left(dl为圆弧元,\lambda为线密度(\lambda=\frac{m}{2\pi R})\right)}\\dJ=R^2dm=\lambda R^2dl\\J=\int^{2\pi R}_{0}\lambda R^2dl=mR^3
$$

d m = λ d l ( d l 为 圆 弧 元 , λ 为 线 密 度 ( λ = m 2 π R ) ) d J = R 2 d m = λ R 2 d l J = ∫ 0 2 π R λ R 2 d l = m R 3 dm=\lambda dl\qquad{\left(dl为圆弧元,\lambda为线密度(\lambda=\frac{m}{2\pi R})\right)}\\dJ=R^2dm=\lambda R^2dl\\J=\int^{2\pi R}_{0}\lambda R^2dl=mR^3 dm=λdl(dlλ线(λ=2πRm))dJ=R2dm=λR2dlJ=02πRλR2dl=mR3

**需要注意的是,如果是在$\begin{align}\end{align}$ 中使用 \\ 命令,则需要在 \\ 后面通过快捷键键入换行命令;如果是在$$\begin{align}\end{align}$$ 的公式块中使用 \\ 命令,则只需在 \\ 后面换行即可。**换行与断行的区别,可以参考 Markdown 全攻略这篇文章是以初学者初学 Markdown 语法的过程来介绍 Markdown 的有些基本语法及效果,换行命令与断行命令都有介绍

上面的效果确实是居中对齐的,但是有些情况下,这种对齐方式可能不是我们想要的一种公式效果,则需要应用公式块(居中对齐,单独成行***不过块级公式本来就是在新行里面键入的***)+$\begin{align}\end{align}$来创造这样的一组方程式,例如

$$
\begin{align}  
&dm=\lambda dl\qquad{\left(dl为圆弧元,\lambda为线密度(\lambda =\frac{m}{2\pi R})\right)}\\  
&dJ=R^2dm=\lambda R^2dl\\  
&J=\int^{2\pi R}_{0}\lambda R^2dl=mR^3
\end{align}
$$

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &dm=\lambda …

当然,因为 Markdown 语法支持 HTML,也可以通过 HTML 语法渲染成居中对齐的效果。

除此之外,块级公式还可以写入数学公式的推导过程,例如

$
\begin{align}
\int^{\lambda}_{0}f(x)dx-\lambda\int^{1}_{0}f(x)dx&=\int^{\lambda}_{0}f(x)dx-\lambda\int^{\lambda}_{0}f(x)dx-\lambda\int^{1}_{\lambda}f(x)dx\\
&=(1-\lambda)\int^{\lambda}_{0}f(x)dx-\lambda\int^{1}_{0}f(x)dx\\
&=(1-\lambda)\lambda f(\xi _{1})-\lambda\lambda(1-\lambda)f(\xi _{2})\\
&=\lambda(1-\lambda)[f(\xi _{1})-f(\xi _{2})]
\end{align}
$

$
\begin{align}
\int{\lambda}_{0}f(x)dx-\lambda\int{1}{0}f(x)dx&=\int{\lambda}_{0}f(x)dx-\lambda\int{\lambda}{0}f(x)dx-\lambda\int^{1}{\lambda}f(x)dx\
&=(1-\lambda)\int{\lambda}_{0}f(x)dx-\lambda\int{1}
{0}f(x)dx\
&=(1-\lambda)\lambda f(\xi _{1})-\lambda\lambda(1-\lambda)f(\xi _{2})\
&=\lambda(1-\lambda)[f(\xi _{1})-f(\xi _{2})]
\end{align}
$

或者

$$
\begin{align}
\int^{\lambda}_{0}f(x)dx-\lambda\int^{1}_{0}f(x)dx&=\int^{\lambda}_{0}f(x)dx-\lambda\int^{\lambda}_{0}f(x)dx-\lambda\int^{1}_{\lambda}f(x)dx\\
&=(1-\lambda)\int^{\lambda}_{0}f(x)dx-\lambda\int^{1}_{0}f(x)dx\\
&=(1-\lambda)\lambda f(\xi _{1})-\lambda\lambda(1-\lambda)f(\xi _{2})\\
&=\lambda(1-\lambda)[f(\xi _{1})-f(\xi _{2})]
\end{align}
$$

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \int^{\lambda}…

数组 {array}

有时候我们会碰到需要写入数组,文档中数组是以表格的外观形式写入公式,这种公式效果能够让文章内容更具可读性,还可以让文档内容在排版效果上更加美观。无论是数组还是表格,都可以在一组 $$$ 内以 begin{array} 开头,以end{array}结束。中间使用 c,l,r 分别代表居中(center)对齐,左(left)对齐,右(right)对齐,若要插入垂直分割线,在定义式中插入|,若要插入水平分割线,则在下一行开头输入\hline,其中每一个元素用 & 间隔,每一行用 \ 结尾,例如

$$
\begin{array}{c|cl|r}
n & a_{11} & b_{22} & c \\
\hline
A11 & 1234.00  & 8765.00  & 9999.00 \\
B22 & 5678.00 & 4321.00  & 9999.00\\
\hline
C & 7912.00 &13086.00 & 19998.00\\
\end{array}
$$

n a 11 b 22 c A 11 1234.00 8765.00 9999.00 B 22 5678.00 4321.00 9999.00 C 7912.00 13086.00 19998.00 \begin{array}{c|cl|r} n & a_{11} & b_{22} & c \\ \hline A11 & 1234.00 & 8765.00 & 9999.00 \\ B22 & 5678.00 & 4321.00 & 9999.00\\ \hline C & 7912.00 &13086.00 & 19998.00\\ \end{array} nA11B22Ca111234.005678.007912.00b228765.004321.0013086.00c9999.009999.0019998.00

方程组 {cases}

写入方程组,则可以在一组 $$$ 包裹的块元素中通过 \begin{cases}\end{cases} 来实现。例如

$$
\begin{cases}
a_{11}x_1+a_{12}x_2+a_{13}x_3=b_1\\
a_{21}x_1+a_{22}x_2+a_{23}x_3=b_2\\
a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3\\
\end{cases}
$$

{ a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 \begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3=b_1\\ a_{21}x_1+a_{22}x_2+a_{23}x_3=b_2\\ a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3\\ \end{cases} a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3

行列式

行列式的写入,可以通过 数组 {array} 的效果来实现,例如

$$
\begin{array}{|cc|}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{array}
$$

a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 \begin{array}{|cc|} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{array} a11a21a31a12a22a32a13a23a33

总结

这篇文章对于目前常用的一些公式的写入,进行了一些归纳与整理,缺陷肯定是有的,对于本文还未举例的一些公式或符号的整理与收录,欢迎读者留言一起讨论。


参考文献

[1] MathJax

a_{21}x_1+a_{22}x_2+a_{23}x_3=b_2\

a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3\
\end{cases}
$$

行列式

行列式的写入,可以通过 数组 {array} 的效果来实现,例如

$$
\begin{array}{|cc|}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{array}
$$

a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 \begin{array}{|cc|} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{array} a11a21a31a12a22a32a13a23a33

总结

这篇文章对于目前常用的一些公式的写入,进行了一些归纳与整理,缺陷肯定是有的,对于本文还未举例的一些公式或符号的整理与收录,欢迎读者留言一起讨论。


参考文献

[1] MathJax

[2] Markdown 全攻略2


  1. 整篇文档在代码块中展示写入公式时的块元素如何标记,同时随机在其下方的区块中展示公式的效果!而在区块中的文字於公式会呈现偏灰暗的字体效果,文档内容中则是黑色的效果。 ↩︎

  2. 这篇文章是以初学者初学 Markdown 语法的过程来介绍 Markdown 的有些基本语法及效果,换行命令与断行命令都有介绍 ↩︎

相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页