本题是第217场周赛的Q2,LC竞赛分为1802。是单调栈板子题。
方法一. 暴力方法(超时)
已知长度为 n 的数组,子序列长度为 k,在 0 base的情况下子序列的第一个元素可以是vector[0] 到 vector[n-k],因此我们直接贪心,在这个区间内找到最小的元素(保证子序列的字典序尽量小),然后通过最小元素的下标更新子序列的区间,如此循环下去,代码如下:
class Solution {
public:
vector<int> mostCompetitive(vector<int>& nums, int k)
{
vector<int> ans;
int start = 0;
while(k>0){
int index = min_element(nums.begin()+start, nums.end()-k+1) - nums.begin();
ans.push_back(nums[index]);
k--;
start = index+1;
}
return ans;
}
};
这一方法的时间复杂度是O(n^2)。
方法二. 单调栈
通过单调栈维护子序列,当栈为空或者当前元素大于栈顶元素时入栈,否则弹栈直到栈为空或者栈顶元素小于当前元素,如此可以保证栈内元素是递增的。因为我们需要 k 个元素的子序列,所以我们可以用一个 cnt 变量记录弹栈的个数,当弹出了 n-k个元素之后我们就不再需要删除(弹栈)了。
代码如下:
class Solution {
public:
vector<int> mostCompetitive(vector<int>& nums, int k)
{
stack<int> record;
int n = nums.size();
int cnt = 0;
for(int i=0;i<n;i++){
if(record.empty()){
record.push(nums[i]);
}
else{
while(!record.empty()&&nums[i]<record.top()&&cnt<n-k){
record.pop();
cnt++;
}
record.push(nums[i]);
}
}
vector<int> res;
while(!record.empty()){
res.push_back(record.top());
record.pop();
}
reverse(res.begin(),res.end());
while(res.size()>k) res.pop_back();
return res;
}
};