小土堆:Pytorch深度学习:常见的Transforms(二)

本文介绍了在Pytorch中如何使用Transforms进行图像处理,包括Resize变换,用于指定尺寸的缩放,Compose组合变换以顺序应用多个操作,以及RandomCrop变换用于随机裁剪图像。示例代码详细展示了这些变换的用法。
摘要由CSDN通过智能技术生成

今天更新小土堆Pytorch深度学习:常见的Transforms(二)。

Resize的使用

# 打印img的大小print(img.size)# 定义trans_resize为resize变换,将img的大小变为(1314, 520)trans_resize = transforms.Resize((1314,520))
# 对img进行resize变换img_resize = trans_resize(img)# 打印resize后的imgprint(img_resize)
# 将resize后的img转换成tensor类型img_resize = trans_totensor(img_resize)# 将resize后的img作为参数,添加到名为"Resize"的图像中,第三个参数为global_step(可选参数,表示当前训练的步数)writer.add_image("Resize", img_resize,  0)
# 关闭writerwriter.close()

Compose-resize-2的使用

# 定义trans_resize_2为resize变换,将img的大小变为宽度或高度为520,另一边按比例缩放trans_resize_2 = transforms.Resize(520)
# 定义trans_compose为组合变换,将trans_resize_2和trans_totensor组合起来使用,先进行resize,再转化为tensor类型trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
# 对img进行组合变换img_resize_2 = trans_compose(img)
# 将组合变换后的img作为参数,添加到名为"Resize"的图像中,第三个参数为global_step(可选参数,表示当前训练的步数)writer.add_image("Resize", img_resize_2, 1)
# 关闭writerwriter.close()

RandomCrop的使用

# 定义trans_random为RandomCrop变换,随机裁剪img的一部分,大小为300x300trans_random = transforms.RandomCrop(300)
# 定义trans_compose_2为组合变换,将trans_random和trans_totensor组合起来使用,先进行随机裁剪,再转化为tensor类型trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
# 对img进行组合变换,裁剪10次,每次裁剪后将结果作为参数添加到名为"RandomCrop"的图像中,第三个参数为global_stepfor i in range(10):    img_crop = trans_compose_2(img)    writer.add_image("RandomCrop", img_crop, i)
# 关闭writerwriter.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值