费马小定理详解

费马小定理

定义:

p 为素数,a 为整数,则 a p ≡ a   ( m o d    p ) a^p \equiv a\ (\mod p) apa (modp) ,若 p ∤ a p \nmid a pa ,则 a p − 1 ≡ 1   ( m o d    p ) a^{p-1} \equiv 1\ (\mod p) ap11 (modp)

先证明若 p ∣ a p \mid a pa ,证明过程如下:
∵ p ∣ a a m o d    p = 0 a p m o d    p = 0 \because p \mid a \\ a\mod p=0 \\ a^p \mod p =0 paamodp=0apmodp=0
再证明当 p ∤ a p \nmid a pa 时:

创建集合 S = S= S={ x 1 , x 2 , x 3 , ⋯   , x p − 1 x_1,x_2,x_3,\cdots,x_{p-1} x1,x2,x3,,xp1} ,S为1,2,3, ⋯ \cdots ,p-1的一个 排列 a x 1 , a x 2 , a x 3 , ⋯   , a x p − 1 ax_1,ax_2,ax_3,\cdots,ax_{p-1} ax1,ax2,ax3,,axp1 ,任意两项模 p 不同余

∃   ∀   i , j , ╞ 1 ≤ i < j < p \exists\ \forall\ i,j,╞ 1\le i <j <p   i,j,╞1i<j<p ,使得 a x i   ≡ a x j ( m o d    p ) ax_i\ \equiv ax_j (\mod p) axi axj(modp)

p ∣ a ( x i − x j ) p\mid a(x_i-x_j) pa(xixj)

∵ p ∤ a    , ∴ p ∣ ( x i − x j ) \because p \nmid a\ \ ,\therefore p\mid(x_i-x_j) pa  ,p(xixj)

∵ x i m o d    p ≠ x j m o d    p \because x_i \mod p \not= x_j\mod p ximodp=xjmodp

∴ 矛盾 \therefore 矛盾 矛盾

∀   k ∈ S , p   ∤   S k \forall \ k \in S,p\ \nmid\ S_k  kS,p  Sk

∵ a x 1 m o d    p , a x 2 m o d    p , ⋯   , a x p − 1 m o d    p \because ax_1\mod p,ax_2\mod p,\cdots,ax_{p-1}\mod p ax1modp,ax2modp,,axp1modp 为1,2,3, ⋯ \cdots ,p-1的一个排列(上文已提到)

∴ ( a x 1 ) ( a x 2 ) ( a x 3 ) ⋯ ( a x p − 1 ) ≡ x 1 ⋅ x 2 ⋅ x 3 ⋯ x p − 1 ( m o d    p ) \therefore (ax_1)(ax_2)(ax_3)\cdots(ax_{p-1})\equiv x_1\cdot x_2\cdot x_3 \cdots x_{p-1} (\mod p) (ax1)(ax2)(ax3)(axp1)x1x2x3xp1(modp)
x 1 ⋅ x 2 ⋅ x 3 ⋯ x p − 1 = ( p − 1 ) ( p − 2 ) ( p − 3 ) ⋯ 2 ⋅ 1 = ( p − 1 ) ! x_1\cdot x_2 \cdot x_3 \cdots x_{p-1} \\ =(p-1)(p-2)(p-3)\cdots 2\cdot 1 \\ =(p-1)! x1x2x3xp1=(p1)(p2)(p3)21=(p1)!
∵ p ∤ ( p − 1 ) ! \because p\nmid(p-1)! p(p1)!

∴ a p − 1 ≡ 1 ( m o d    p ) \therefore a^{p-1}\equiv 1 (\mod p) ap11(modp)

得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值