逆元详解(加扩展欧几里得和费马小定理的证明)

最近,wyb小朋友老是不好好搞他的数据结构,跑过来问我数学,没办法,所以我决定每天发一篇数论的博客,骗骗流量(以后wyb有不会的就看我博客,哈哈哈)先从基础的更起吧。

逆元:

我第一次接触逆元是在离散数学的代数系统中,对于一种运算满足(a * a^{-1} = e)\Lambda(a^{-1} * a = e)e为该运算的单位)则称a^{-1}a的逆元。

逆元在算法中的运用:

逆元在算法中主要是为了整数的除法取模,显然除法是不能直接取模的。但是我们可以转化一下,因为乘法是可以直接取模的。

  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
扩展欧几里得算法是求解一元一次不定方程 ax + by = gcd(a,b) 的一种方法,其中 a 和 b 是整数,gcd(a,b) 是它们的最大公约数,x 和 y 是整数解。元是指在模运算下,一个数的乘法元是指与它相乘后模运算得到 1 的数。在数论中,常常需要求一个数在模意义下的元,即一个数 k 满足 (k * x) % m = 1,其中 m 是模数。 下面是扩展欧几里得算法求元的 C 语言实现: ```c #include <stdio.h> // 扩展欧几里得算法 int exgcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int gcd = exgcd(b, a % b, y, x); *y -= a / b * (*x); return gcd; } // 求元 int modinv(int a, int m) { int x, y; int gcd = exgcd(a, m, &x, &y); if (gcd != 1) { return -1; // a 和 m 不互质,不存在元 } else { return (x % m + m) % m; // 转化为正整数 } } int main() { int a = 3, m = 11; int inv = modinv(a, m); if (inv == -1) { printf("%d 在模 %d 意义下不存在元\n", a, m); } else { printf("%d 在模 %d 意义下的元是 %d\n", a, m, inv); } return 0; } ``` 这个程序中,exgcd 函数通过递归实现扩展欧几里得算法,返回 a 和 b 的最大公约数,并且求出 x 和 y 的值。在 modinv 函数中,我们调用 exgcd 函数求出 a 和 m 的最大公约数,并且判断 a 和 m 是否互质,如果不互质则不存在元。否则,根据扩展欧几里得算法的结果,求出 x 的值作为 a 在模 m 意义下的元。注意,由于 x 可能是负数,所以要将其转化为正整数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值