数据结构与算法Python(排序与搜索)

排序

排序算法的稳定性

稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。

冒泡排序

冒泡排序的过程

  • 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  • 针对所有的元素重复以上的步骤,除了最后一个。
  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

冒泡排序的实现

def bubble_sort(alist):
    '''冒泡排序'''
    n = len(alist)
    for j in range(n-1):    # ※注意! n个元素,最后一个元素是第n-1个,倒数第二个是第n-2个!
        count = 0
        for i in range(n-j-1):    # ※两次循环的参数不要相同,用i和j
            # 游标从头到尾
            if alist[i] > alist[i+1]:
                alist[i],alist[i+1] = alist[i+1],alist[i]
                count += 1
        if count == 0:    # ※改进:如果某次走完一遍发现已经排好了,则跳出函数
            return

冒泡排序的时间复杂度

  • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  • 最坏时间复杂度:O( n 2 n^2 n2)
  • 稳定性:稳定

选择排序

选择排序的过程

  • 在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  • 以此类推,直到所有元素均排序完毕。

选择排序的实现

def select_sort(alist):
    '''选择排序'''
    for i in range(len(alist)-1):    #0~n-2
        min_index = i
        for j in range(i+1, len(alist)):
            if alist[min_index] > alist[j]:
                min_index = j

        alist[i],alist[min_index] = alist[min_index],alist[i]

选择排序的时间复杂度

  • 最优时间复杂度:O( n 2 n^2 n2)
  • 最坏时间复杂度:O( n 2 n^2 n2)
  • 稳定性:不稳定(考虑升序每次选择最大的情况)

插入排序

插入排序的过程

选择排序过程1:

  • 在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  • 以此类推,直到所有元素均排序完毕。
    选择排序过程2(后续实现的):
  • 左侧开始第一个元素为有序序列
  • 将剩余未排序元素中的第一个插入到左侧的有序序列
  • 以此类推,直到所有元素均排序完毕

插入排序的实现

def insert_sort(alist):
    '''插入排序'''
    n = len(alist)
    for i in range(1, n):
        a1 = i    # a1所指的就是将要插入到前面有序序列的值
        for j in range(i-1, -1, -1):    # 从有序序列的末尾向前比较,如果要插入的值更小,就交换,直到到达合适的位置
            if alist[a1] < alist[j]:
                alist[a1], alist[j] = alist[j], alist[a1]
                a1 = j
            else:    # 优化:如果不比j指针对应的值小了,就直接退出循环
                break

插入排序的时间复杂度

  • 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  • 最坏时间复杂度:O( n 2 n^2 n2)
  • 稳定性:稳定

希尔排序

希尔排序(Shell Sort)是插入排序的一种,也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本

希尔排序的过程

  • 按一定步长(间隔)进行分组
  • 对每组元素分别进行插入排序
  • 缩小步长(间隔)
  • 重复上述过程,直到步长为1时的那一组插入排序完毕

希尔排序的实现

def shell_sort(alist):
    '''希尔排序'''
    n = len(alist)
    gap = n // 2
    while gap != 0:
        for i in range(gap,n):
            a1 = i
            j = a1 - gap
            while j >= 0:
                if alist[a1] < alist[j]:
                    alist[a1], alist[j] = alist[j], alist[a1]
                    a1 = j
                    j -= gap
                else:
                    break
        gap = gap // 2

希尔排序的时间复杂度

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O( n 2 n^2 n2)
  • 稳定性:不稳定

快速排序 ※

快速排序的过程

  • 从数列中挑出一个元素,称为"基准"(pivot),
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

快速排序的实现

def quick_sort(alist, first, last):
    '''快速排序'''
    if first >= last:
        return
    mid_value = alist[first]
    low = first
    high = last
    while low < high:
        while low < high and alist[high] >= mid_value:    # 让high游标左移:只有两个指针不重合并且所指元素符合大小要求,指针才会继续进行
            high -= 1
        alist[low] = alist[high]    # 把high指的元素放到low指的位置上
        while low < high and alist[low] < mid_value:    # 让low游标右移:# 只有两个指针不重合并且所指元素符合大小要求,指针才会继续进行
            low += 1
        alist[high] = alist[low]
        # 退出循环时,low == high
    alist[high] = mid_value    # 再把作比较的值放到中间位置
    # 递归
    # 对low左边的列表执行快速排序
    quick_sort(alist,first,low-1)
    # 对low右边的列表执行快速排序
    quick_sort(alist,low+1,last)

快速排序的时间复杂度

  • 最优时间复杂度:O( n l o g 2 n nlog_2n nlog2n)
  • 最坏时间复杂度:O( n 2 n^2 n2)
  • 稳定性:不稳定

归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组

归并排序的过程

  • 将数组分解最小,
  • 然后合并两个有序数组:基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
  • 以此类推,合并到最后成一个数组即可

归并排序的实现

递归的过程一定要自己画图走一遍!

def merge_sort(alist):
    '''归并排序'''
    '''使用递归'''
    n = len(alist)
    if n <= 1:
        return alist
    mid = n // 2
    # left_li 表示采用归并排序后形成的有序的新的列表
    left_li = merge_sort(alist[:mid])
    # right_li 表示采用归并排序后形成的有序的新的列表
    right_li = merge_sort(alist[mid:])
    # 将两个有序的子序列合并为一个新的整体
    left_pointer, right_pointer = 0, 0
    result = []
    while left_pointer < len(left_li) and right_pointer < len(right_li):
        if left_li[left_pointer] <=  right_li[right_pointer]:
            result.append(left_li[left_pointer])
            left_pointer += 1
        else:
            result.append(right_li[right_pointer])
            right_pointer += 1
    result += left_li[left_pointer :]
    result += right_li[right_pointer :]
    return result

归并排序的时间复杂度

  • 最优时间复杂度:O( n l o g 2 n nlog_2n nlog2n)
  • 最坏时间复杂度:O( n l o g 2 n nlog_2n nlog2n)
  • 稳定性:稳定

搜索(查找)

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找

二分查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。

二分查找的过程

  • 假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功。
  • 否则利用中间位置记录将表分成前、后两个子表,
  • 如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。
  • 重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

二分查找的实现

有递归版和非递归版两种代码。

def binary_search_1(alist,item):
    '''二分查找'''
    '''递归'''
    n = len(alist)
    if n > 0:    # 递归循环的条件
        mid = n // 2
        if alist[mid] == item:
            return True
        elif item < alist[mid]:
            return binary_search(alist[:mid], item)    # ※注意要有返回值
        else:
            return binary_search(alist[mid+1:], item)    # ※注意要有返回值
    return False
def binary_search_2(alist,item):
    '''二分查找'''
    '''非递归'''
    n = len(alist)
    first = 0
    last = n-1
    while first <= last:
        mid = (first + last) // 2
        if alist[mid] == item:
            return True
        elif item < alist[mid]:
            last = mid - 1
        else:
            first = mid + 1
    return False

二分查找的时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O( l o g 2 n log_2n log2n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值