cuda编程以及GPU基本知识

本文介绍了CPU与GPU的基本知识,强调了它们在延迟和吞吐量上的差异。CPU擅长控制复杂,而GPU则适用于并行计算和高吞吐量。CUDA编程中,重点讲解了CUDA编程模型,包括线程块、网格、线程束和内存模型,阐述了如何利用GPU进行高性能计算。
摘要由CSDN通过智能技术生成

CPU与GPU的基本知识

GPU:吞吐导向内核
CPU:延迟导向内核

  • 延迟:一条指令从发出到发出结果的时间间隔
  • 吞吐量:单位时间内处理指令的数量

CPU特点

  • 内存大:多级缓存结构提高访存速度
    • 处理运算速度远高于访问存储速度 -> 空间换时间
    • 经常访问的内容放到低级缓存(L1),不常访问的内容放到高级缓存
  • 控制复杂
    • 分支预测机制 (if-else/break/continue等 在硬件端的机制)
    • 流水线数据前送
  • 运算单元强大
    • 整型浮点型复杂运算速度快

请添加图片描述

GPU特点

  • 缓存小
    • 提高内存吞吐
  • 控制简单
    • 没有分支预测
    • 没有数据转发
    • (-> 复杂指令效率不高,简单指令吞吐显著提高)
  • 精简运算单元
    • 多长延时流水线以实现高吞吐量 (下图每一行绿色块)
    • 需要大量的线程来容忍延迟
      在这里插入图片描述
      如图中所示,每一行的运算单元只有一个控制器,所以每一行的运算单元执行的是同一个指令,只不过是使用不同的数据。

GPU vs. CPU

  • CPU:连续计算部分,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值