矩阵乘法的三种角度

教科书视角

假设有两个矩阵 2 × 2 2\times2 2×2 A A A B B B,其中
A = [ a 11 a 12 a 21 a 22 ] B = [ b 11 b 12 b 21 b 22 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} \qquad \qquad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} A=[a11a21a12a22]B=[b11b21b12b22]
他们的乘积为矩阵 C C C,则有 C = A B C=AB C=AB
C = A B = [ a 11 a 12 a 21 a 22 ] [ b 11 b 12 b 21 b 22 ] = [ a 11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12 + a 22 b 22 ] C = AB =\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \\ \end{bmatrix} C=AB=[a11a21a12a22][b11b21b12b22]=[a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]

列向量视角

假如我们把矩阵乘法里面的每一列都看成是一个列向量,那么矩阵 A A A B B B就可以表示成:
A = [ a 11 a 12 a 21 a 22 ] = [ a 1 a 2 ] B = [ b 11 b 12 b 21 b 22 ] = [ b 1 b 2 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} = \begin{bmatrix} a_1 &a_2\end{bmatrix} \qquad \qquad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} = \begin{bmatrix} b_1 &b_{2}\end{bmatrix} A=[a11a21a12a22]=[a1a2]B=[b11b21b12b22]=[b1b2]
对应地,矩阵 A A A B B B的乘积矩阵 C C C可以表示为:
C = A B = [ a 11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12 + a 22 b 22 ] = [ c 1 c 2 ] C = AB =\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \\ \end{bmatrix} = \begin{bmatrix} c_1 & c_2 \end{bmatrix} C=AB=[a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]=[c1c2]
那么矩阵 C C C的第一个列向量 c 1 c_1 c1为:
c 1 = [ a 11 b 11 + a 12 b 21 a 21 b 11 + a 22 b 21 ] = b 11 [ a 11 a 21 ] + b 21 [ a 12 a 22 ] = b 11 a 1 + b 21 a 2 = [ a 1 a 2 ] [ b 11 b 21 ] c_1 =\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} \\ a_{21}b_{11} + a_{22}b_{21} \\ \end{bmatrix} = b_{11}\begin{bmatrix} a_{11} \\a_{21} \end{bmatrix} + b_{21}\begin{bmatrix} a_{12} \\a_{22} \end{bmatrix} = b_{11} a_1 + b_{21}a_2 = \begin{bmatrix} a_1 &a_2\end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21}\end{bmatrix} c1=[a11b11+a12b21a21b11+a22b21]=b11[a11a21]+b21[a12a22]=b11a1+b21a2=[a1a2][b11b21]
可以发现 [ b 11 b 21 ] \begin{bmatrix} b_{11} \\ b_{21}\end{bmatrix} [b11b21] 恰恰就是矩阵 B B B 的第一列,而 [ a 1 a 2 ] \begin{bmatrix} a_1 &a_2\end{bmatrix} [a1a2]就是矩阵 A A A中的所有列向量。从而我们可以知道 c 1 c_1 c1其实就是矩阵 A A A中所有列向量的线性组合,而线性组合的系数是矩阵 B B B对应列向量的元素。

更一般性地,我们可以推出:如果我们把矩阵乘法里面参与者 C = A B C = AB C=AB的每一列都看成是一个列向量,那么矩阵 C C C中的每一列都是矩阵 A A A中所有列向量的线性组合,而线性组合的系数是矩阵 B B B对应列向量的元素。

行向量视角

假如我们把矩阵乘法里面的每一行都看成是一个行向量,那么矩阵 A A A B B B就可以表示成
A = [ a 11 a 12 a 21 a 22 ] = [ a 1 a 2 ] B = [ b 11 b 12 b 21 b 22 ] = [ b 1 b 2 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2\end{bmatrix} \qquad \qquad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} = \begin{bmatrix} b_1 \\b_{2}\end{bmatrix} A=[a11a21a12a22]=[a1a2]B=[b11b21b12b22]=[b1b2]
对应地,矩阵 A A A B B B的乘积矩阵 C C C可以表示为:
C = A B = [ a 11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12 + a 22 b 22 ] = [ c 1 c 2 ] C= AB =\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \\ \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} C=AB=[a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]=[c1c2]
那么矩阵 C C C的第一个列向量 c 1 c_1 c1为:
c 1 = [ a 11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 ] = a 11 [ b 11 b 21 ] + a 12 [ b 12 b 22 ] = a 11 b 1 + a 12 b 2 = [ a 11 a 12 ] [ b 1 b 2 ] c_1 = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ \end{bmatrix} = a_{11}\begin{bmatrix} b_{11} & b_{21}\end{bmatrix} + a_{12} \begin{bmatrix} b_{12} &b_{22} \end{bmatrix} = a_{11}b_1 + a_{12}b_2 = \begin{bmatrix} a_{11} &a_{12} \end{bmatrix}\begin{bmatrix} b_1 \\b_2 \end{bmatrix} c1=[a11b11+a12b21a11b12+a12b22]=a11[b11b21]+a12[b12b22]=a11b1+a12b2=[a11a12][b1b2]
可以发现 [ a 11 a 12 ] \begin{bmatrix} a_{11} & a_{12}\end{bmatrix} [a11a12] 恰恰就是矩阵 A A A 的第一行,而 [ b 1 b 2 ] \begin{bmatrix} b_1 \\b_2\end{bmatrix} [b1b2]就是矩阵 B B B中的所有行向量。从而我们可以知道 c 1 c_1 c1其实就是矩阵 B B B中所有行向量的线性组合,而线性组合的系数是矩阵 A A A对应行向量的元素。

更一般性地,我们可以推出:如果我们把矩阵乘法里面参与者 C = A B C = AB C=AB的每一行都看成是一个行向量,那么矩阵 C C C中的每一行都是矩阵 B B B中所有行向量的线性组合,而线性组合的系数是矩阵 A A A对应行向量的元素。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值