HashMap 源码剖析
- 如果你是要面对面试,可以直接去看下基本概念与总结
1.hashmap的基本概念
- hash的基本概念:把一个任意长度的基本输入,通过一系列的hash算法映射成一个固定长度的输出。有时候两个不同的输入,映射出一个相同的输出,这种情况呗称为hash冲突。
- hashmap的存储结构按JDK8来说是:数组+链表+红黑树构成的。
- hashmap的每一个存储单元称为一个node结构。node中包含了:
key字段:map中key的字段
value字段:map中value的字段
next字段:当发生hash冲突的时候,当前桶中的node与发生冲突的node形成编标要用到的字段
hash字段:存储key的hash值,但是要经过一次扰动
2.hashmap类
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
}
3.hashmap基本属性
private static final long serialVersionUID = 362498820763181265L;//序列化版本号
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 初始化长度为16,切必须是2的N次方
static final int MAXIMUM_CAPACITY = 1 << 30;//最大的容量为2^30,一般用于自定义初始化容量
static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认负载因子
static final int TREEIFY_THRESHOLD = 8;//数组单个单元要转化为红黑树节点的阈值
static final int UNTREEIFY_THRESHOLD = 6;//反树化时,节点的阈值
static final int MIN_TREEIFY_CAPACITY = 64;//树化时数组长度的阈值
4.hashmap Node属性
//hashmap中节点的基本属性,实现get,set方法。重写了hashCode、toString、equals方法。 属性在上文有介绍
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
//扰动函数,用于计算hash值,在之后专门专题讲解。
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//在发送hash冲突的时候。用于比较两个node。
static Class<?> comparableClassFor(Object x) {
if (x instanceof Comparable) {
Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null) {
for (int i = 0; i < ts.length; ++i) {
if (((t = ts[i]) instanceof ParameterizedType) &&
((p = (ParameterizedType)t).getRawType() ==
Comparable.class) &&
(as = p.getActualTypeArguments()) != null &&
as.length == 1 && as[0] == c) // type arg is c
return c;
}
}
}
return null;
}
static int compareComparables(Class<?> kc, Object k, Object x) {
return (x == null || x.getClass() != kc ? 0 :
((Comparable)k).compareTo(x));
}
5.hashmap 构造器原理与字段
//用于寻找大于或等于capacity的最小2的幂
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
// 字段
transient Node<K,V>[] table; //hashMap数组的表示
transient Set<Map.Entry<K,V>> entrySet; //entry节点
transient int size; //数组长度
transient int modCount; //添加的元素个数
int threshold; //合理的初始化数组长度,根据tableSizeFor()得到,用于手动设置时使用
final float loadFactor; //负载因子,用于手动设置时使用
// 构造器
//构造器一:定义Node[]数组初始长度,与负载因子
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
//手动设定负载因子
this.loadFactor = loadFactor;
//自动设置合适的数组长度
this.threshold = tableSizeFor(initialCapacity);
}
//构造器二:定义Node[]数组初始长度,默认负载因子
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//构造器三:仅创建HashMap对象,并初始化负债因子为0.75f
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//构造器四:转化hashmap的父类
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
//这个方法为,将map中所有数据插入到hashmap中,此文不再描述
putMapEntries(m, false);
}
6.hashmap树节点(简要分析)
hashmap树节点比较复杂,之后做专门的分析
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // 父节点
TreeNode<K,V> left; //左节点
TreeNode<K,V> right;//右节点
TreeNode<K,V> prev; // 记录上一个节点
boolean red;//节点红黑判断
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
7.hashmap get方法
//调用的GET方法
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
//实际执行的GET方法
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab;
Node<K,V> first, e;
int n; K k;
// table不为空 && table长度大于0 && table索引位置(根据hash值计算出)节点不为空
if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
// first的key等于传入的key则返回first对象
if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k))))
return first;
//first的key不等于传入的key则说明是链表,向下遍历
if ((e = first.next) != null) {
// 判断是否为TreeNode,是则为红黑树
// 如果是红黑树节点,则调用红黑树的查找目标节点方法getTreeNode
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//走下列步骤表示是链表,循环至节点的key与传入的key值相等
do {
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
//找不到符合的返回空
return null;
}
7.hashmap put方法
//掉用的PUT方法,hash(key)调用本例中的hash()方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* 实际执行的PUT方法
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab;
Node<K,V> p;
int n, i;
// table是否为空或者length等于0, 如果是则调用resize方法进行初始化
// table是一个 (Node<K,V>[] table;) Node类型的数组
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 通过hash值计算索引位置, 如果table表该索引位置节点为空则新增一个
if ((p = tab[i = (n - 1) & hash]) == null) // 将索引位置的头节点赋值给p
tab[i] = newNode(hash, key, value, null);
else { // table表该索引位置不为空
Node<K,V> e; K k;
//判断p节点的hash值和key值是否跟传入的hash值和key值相等
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
e = p; // 如果相等, 则p节点即为要查找的目标节点,赋值给e
// 判断p节点是否为TreeNode, 如果是则调用红黑树的putTreeVal方法查找目标节点
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 走到这代表p节点为普通链表节点
else {
// 遍历此链表, binCount用于统计节点数
for (int binCount = 0; ; ++binCount) {
//p.next为空代表目标节点不存在
if ((e = p.next) == null) {
//新增一个节点插入链表尾部
p.next = newNode(hash, key, value, null);
//如果节点数目超过8个,调用treeifyBin方法将该链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//e节点的hash值和key值都与传入的相等, 则e即为目标节点,跳出循环
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// e不为空则代表根据传入的hash值和key值查找到了节点,将该节点的value覆盖,返回oldValue
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e); // 用于LinkedHashMap
return oldValue;
}
}
//map修改次数加1
++modCount;
//map节点数加1,如果超过阀值,则扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict); // 用于LinkedHashMap
return null;
}
8.hashmap resize()方法
final Node<K,V>[] resize() {
//oldTab保存未扩容的tab
Node<K,V>[] oldTab = table;
//oldTab最大容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//oldTab阀值
int oldThr = threshold;
int newCap, newThr = 0;
//如果老map有值
if (oldCap > 0) {
// 老table的容量超过最大容量值,设置阈值为Integer.MAX_VALUE,返回老表
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
//老table的容量没有超过最大容量值,将新容量赋值为老容量*2,如果新容量<最大容量并且老容量>=16, 则将新阈值设置为原来的两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}else if (oldThr > 0){ // 老表的容量为0, 老表的阈值大于0, 是因为初始容量被放入阈值
newCap = oldThr; // 则将新表的容量设置为老表的阈值
//放第一个值时,对数组容量及阈值进行初始化。
}else { //老表的容量为0, 老表的阈值为0, 则为空表,设置默认容量和阈值
newCap = DEFAULT_INITIAL_CAPACITY; //16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); //12
}
// 如果新阈值为空, 则通过新的容量*负载因子获得新阈值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
}
// 将当前阈值赋值为刚计算出来的新的阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//初始化数组对象
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//将当前的表赋值为新定义的表
table = newTab;
// 如果老表不为空, 则需遍历将节点赋值给新表
if (oldTab != null) {
//通过循环将老数组重新赋值给新数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) { // 将索引值为j的老表头节点赋值给e
oldTab[j] = null; //将老表的节点设置为空, 以便垃圾收集器回收空间
// 如果e.next为空, 则代表老表的该位置只有1个节点,
// 通过hash值计算新表的索引位置, 直接将该节点放在该位置
if (e.next == null) //
newTab[e.hash & (newCap - 1)] = e;
//e.next不为空,判断是否是红黑树
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//是普通链表
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//如果e的hash值与老表的容量进行与运算为0,则扩容后的索引位置跟老表的索引位置一样
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
//如果e的hash值与老表的容量进行与运算为1,则扩容后的索引位置为:
// 老表的索引位置+oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null; // 最后一个节点的next设为空
newTab[j] = loHead; // 将原索引位置的节点设置为对应的头结点
}
if (hiTail != null) {
hiTail.next = null; // 最后一个节点的next设为空
newTab[j + oldCap] = hiHead; // 将索引位置为原索引+oldCap的节点设置为对应的头结点
}
}
}
}
}
return newTab;
}
9.hashmap remove()方法
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
// 如果table不为空并且根据hash值计算出来的索引位置不为空, 将该位置的节点赋值给p
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 如果p的hash值和key都与入参的相同, 则p即为目标节点, 赋值给node
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) { // 否则向下遍历节点
if (p instanceof TreeNode) // 如果p是TreeNode则调用红黑树的方法查找节点
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do { // 遍历链表查找符合条件的节点
// 当节点的hash值和key与传入的相同,则该节点即为目标节点
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e; // 赋值给node, 并跳出循环
break;
}
p = e; // p节点赋值为本次结束的e
} while ((e = e.next) != null); // 指向像一个节点
}
}
// 如果node不为空(即根据传入key和hash值查找到目标节点),则进行移除操作
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode) // 如果是TreeNode则调用红黑树的移除方法
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
// 走到这代表节点是普通链表节点
// 如果node是该索引位置的头结点则直接将该索引位置的值赋值为node的next节点
else if (node == p)
tab[index] = node.next;
// 否则将node的上一个节点的next属性设置为node的next节点,
// 即将node节点移除, 将node的上下节点进行关联(链表的移除)
else
p.next = node.next;
++modCount; // 修改次数+1
--size; // table的总节点数-1
afterNodeRemoval(node); // 供LinkedHashMap使用
return node; // 返回被移除的节点
}
}
return null;
}
总结篇
- 在JDK8 HashMap使用的是懒加载模式,也就是说,在默认初始化hashmap的时候,并不会在内存中创建一个长度为16的数组。而是在第一次put数据的时候才会创建。
- 负载因子的作用:默认负载因子为0.75.也就是说,hashmap在put数据的时候,发现数组中75%的index中都有了数据,就会进行一次扩容。每一次扩容大小均为2^n。(默认情况下,首次初始化数组长度为16,那么扩容阈值就位12)
- 链表转化为红黑树的条件:1.单个index中的链表长度超过8。 2.当前散列表长度打到64。
- put算法:
1、对比hash值。如果节点已经存在,则更新原值。
2、如果节点不存在,则插入数组中,如果数组已经有值,则判断是否是红黑树,如果是,则调用红黑树方法插入
3、如果插入的是链表,插入尾部,然后判断节点数是否超过8,如果超过,则转换为红黑树
4、先插入的数据,后面判断是否超过阀值再进行的扩容