深入理解PyTorch中的NiN和1×卷积

73 篇文章 ¥59.90 ¥99.00
本文深入探讨了PyTorch中Network in Network(NiN)和1×卷积的概念。NiN通过在卷积层后添加全局平均池化层的全连接网络增强非线性表达能力。1×1卷积虽然尺寸小,但能调整通道数、降低计算量并引入非线性。PyTorch提供了实现这些概念的工具和函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习领域,卷积神经网络(Convolutional Neural Networks,CNNs)是一种广泛应用于图像识别和计算机视觉任务的强大工具。PyTorch是一个流行的深度学习框架,提供了丰富的工具和函数来支持CNN的实现。本文将探讨PyTorch中两个重要的概念:Network in Network(NiN)和1×卷积,并给出相应的源代码示例。

NiN是由Min Lin等人于2013年提出的一种创新的卷积神经网络结构。它的主要思想是在卷积层中引入一个全连接网络,从而增加模型的非线性表达能力。传统的CNN结构使用卷积层和池化层来提取特征,而NiN在卷积层后添加一层称为"全局平均池化层"的全连接层。

下面是一个使用PyTorch实现NiN网络的示例代码:

import torch
import torch.nn as nn

class NiNBlock(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值