在深度学习领域,卷积神经网络(Convolutional Neural Networks,CNNs)是一种广泛应用于图像识别和计算机视觉任务的强大工具。PyTorch是一个流行的深度学习框架,提供了丰富的工具和函数来支持CNN的实现。本文将探讨PyTorch中两个重要的概念:Network in Network(NiN)和1×卷积,并给出相应的源代码示例。
NiN是由Min Lin等人于2013年提出的一种创新的卷积神经网络结构。它的主要思想是在卷积层中引入一个全连接网络,从而增加模型的非线性表达能力。传统的CNN结构使用卷积层和池化层来提取特征,而NiN在卷积层后添加一层称为"全局平均池化层"的全连接层。
下面是一个使用PyTorch实现NiN网络的示例代码:
import torch
import torch.nn as nn
class NiNBlock(