时间序列预测是一项重要的任务,可以应用于各种领域,如金融、气象和交通等。Transformer是一种强大的深度学习模型,已经在自然语言处理任务中取得了巨大成功。在本文中,我们将使用PyTorch库来构建一个Transformer模型,用于多变量多步长时间序列的预测。
首先,我们需要导入所需的Python库,包括PyTorch、NumPy和Matplotlib:
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
接下来,我们将定义Transformer模型的各个组件。Transformer模型由编码器和解码器组成。编码器用于将输入序列转换为一系列表示&