进程与线程
什么是线程(thread)?
线程是操作系统能够进行运算调度的最小单位。它被包含在进程中,是进程中的实际运算单位。一天线程指的是进程中的一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务(是操作系统最小的调度单位,是一堆指令)。
python进程语法与实例:
Python中使用线程有两种方式:函数或者用类来包装线程对象。
函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程。语法如下
_thread.start_new_thread ( function, args[, kwargs] )
参数说明:
function - 线程函数。
args - 传参给线程函数的参数,他必须是个tuple(元组)类型。
kwargs - 可选参数。
实例:
import _thread import time # 为线程定义一个函数 def print_time( threadName, delay): count = 0 while count < 5: time.sleep(delay) count += 1 print ("%s: %s" % ( threadName, time.ctime(time.time()) )) # 创建两个线程 try: _thread.start_new_thread( print_time, ("Thread-1", 2, ) ) _thread.start_new_thread( print_time, ("Thread-2", 4, ) ) except: print ("Error: 无法启动线程") while 1: pass
线程模块:
Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。
_thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。
threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:
run(): 用以表示线程活动的方法。
start():启动线程活动。
join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
isAlive(): 返回线程是否活动的。
getName(): 返回线程名。
setName(): 设置线程名。
使用threading模块创建线程:
import threading import time exitFlag = 0 class myThread (threading.Thread): def __init__(self, threadID, name, counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print ("开始线程:" + self.name) print_time(self.name, self.counter, 5) print ("退出线程:" + self.name) def print_time(threadName, delay, counter): while counter: if exitFlag: threadName.exit() time.sleep(delay) print ("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 # 创建新线程 thread1 = myThread(1, "Thread-1", 1) thread2 = myThread(2, "Thread-2", 2) # 开启新线程 thread1.start() thread2.start() thread1.join() thread2.join() print ("退出主线程")
线程的同步:
如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。
使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。如下:
多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。
考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。
那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。
锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。
经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。
实例:
import threading import time class myThread (threading.Thread): def __init__(self, threadID, name, counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print ("开启线程: " + self.name) # 获取锁,用于线程同步 threadLock.acquire() print_time(self.name, self.counter, 3) # 释放锁,开启下一个线程 threadLock.release() def print_time(threadName, delay, counter): while counter: time.sleep(delay) print ("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 threadLock = threading.Lock() threads = [] # 创建新线程 thread1 = myThread(1, "Thread-1", 1) thread2 = myThread(2, "Thread-2", 2) # 开启新线程 thread1.start() thread2.start() # 添加线程到线程列表 threads.append(thread1) threads.append(thread2) # 等待所有线程完成 for t in threads: t.join() print ("退出主线程")
线程优先级队列(Queue):
Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。
这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。
Queue 模块中的常用方法:
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]])获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作
进程:
比如 QQ以一个整体的形式暴露给操作系统管理,里面包含着对各种资源的调用,内存的管理,网络的借口的调用等。。。对各种资源的管理的集合 就可以成为QQ的进程(一个下程序的各种资源的集合)。
进程要操作CPU,必须要先创建一个线程,刚启动一个进程,会自动启动一个线程,进程中的第一个线程是主线程,主线程可以创建子线程,而子线程可以创建更多的线程,它们创建的新线程是独立的 没有隶属关系,而进程不是的。
唯一的进程标识符是 pid 。
进程与线程的区别?
1. 线程共享内存空间,进程是独立的。
2. 同一个进程的进程之间可以直接交流,讲个进程要想通信,需要通过一个中间代理实现。
3. 创建新线程很简单,创建新进程需要多其父进程进行一次克隆。
4. 一个线程可以控制和操作同一个进程里的其他线程,但是进程只能操作子进程。
问线程快还是进程快?
答:两者没有可比性。进程是资源的集合,线程是完成真正任务的,进程要想完成任务也要通过线程所有两者没有可比性。但是启动线程要比启动进程快,因为进程是资源的集合,它要向系统请求开辟一个空间,而进程是指令的集合,不需要系统发指令可以直接执行,所以启动线程比进程快。
python中的多线程不是正在的多线程:
不管计算机是双核还是四核,它只能在一个核中执行,我们利用python的多线程优势,也就是利用了CPU上下文切换的优势,让我们看上去是并发的效果,其实它只是单线程在执行。
什么时候用多线程呢?怎么提高效率?
io 操作不占用cpu : 从网络 硬盘 内存 读取的数据。
计算占用cpu :1+1 ,1*2 等......
python 多线程 不适合 cpu 密集操作型的任务,适合 io 操作密集型的任务
计算机的一些小知识:
内存运行比硬盘块 CPU运行比内存快 相当于 往硬盘储存数据就等于骑自行车,向内存里存数据相当于高铁,而往CPU存数据就相当于火箭 。
不错的内存 (1s :12g) 一秒可以达到 12G的读 。
CPU的运算 (2.7GHz:2.7E) 每秒钟的单核可以读写 2.7E 。