python - 多线程

进程与线程

什么是线程(thread)?

     线程是操作系统能够进行运算调度的最小单位。它被包含在进程中,是进程中的实际运算单位。一天线程指的是进程中的一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务(是操作系统最小的调度单位,是一堆指令)。

python进程语法与实例:

     Python中使用线程有两种方式:函数或者用类来包装线程对象。

     函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程。语法如下

   _thread.start_new_thread ( function, args[, kwargs] )

参数说明:

     function - 线程函数。

     args - 传参给线程函数的参数,他必须是个tuple(元组)类型。

     kwargs - 可选参数。

实例:

import _thread
import time

# 为线程定义一个函数
def print_time( threadName, delay):
   count = 0
   while count < 5:
      time.sleep(delay)
      count += 1
      print ("%s: %s" % ( threadName, time.ctime(time.time()) ))

# 创建两个线程
try:
   _thread.start_new_thread( print_time, ("Thread-1", 2, ) )
   _thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
   print ("Error: 无法启动线程")

while 1:
   pass

线程模块:

     Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。

     _thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。

     threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法

     threading.currentThread(): 返回当前的线程变量。

     threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。

     threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

     run(): 用以表示线程活动的方法。

     start():启动线程活动。

     join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。

     isAlive(): 返回线程是否活动的。

     getName(): 返回线程名。

     setName(): 设置线程名。


使用threading模块创建线程:

import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print ("开始线程:" + self.name)
        print_time(self.name, self.counter, 5)
        print ("退出线程:" + self.name)

def print_time(threadName, delay, counter):
    while counter:
        if exitFlag:
            threadName.exit()
        time.sleep(delay)
        print ("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print ("退出主线程")

线程的同步:  

     如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。如下:

     多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

     考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。

那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

     锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。


实例:

import threading
import time

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print ("开启线程: " + self.name)
        # 获取锁,用于线程同步
        threadLock.acquire()
        print_time(self.name, self.counter, 3)
        # 释放锁,开启下一个线程
        threadLock.release()

def print_time(threadName, delay, counter):
    while counter:
        time.sleep(delay)
        print ("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1

threadLock = threading.Lock()
threads = []

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()

# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)

# 等待所有线程完成
for t in threads:
    t.join()
print ("退出主线程")

线程优先级队列(Queue):

     Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。

     这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。

     Queue 模块中的常用方法:

     Queue.qsize() 返回队列的大小

     Queue.empty() 如果队列为空,返回True,反之False

     Queue.full() 如果队列满了,返回True,反之False

     Queue.full 与 maxsize 大小对应

     Queue.get([block[, timeout]])获取队列,timeout等待时间

     Queue.get_nowait() 相当Queue.get(False)

     Queue.put(item) 写入队列,timeout等待时间

     Queue.put_nowait(item) 相当Queue.put(item, False)

     Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号

     Queue.join() 实际上意味着等到队列为空,再执行别的操作

进程:

     比如 QQ以一个整体的形式暴露给操作系统管理,里面包含着对各种资源的调用,内存的管理,网络的借口的调用等。。。对各种资源的管理的集合 就可以成为QQ的进程(一个下程序的各种资源的集合)。

     进程要操作CPU,必须要先创建一个线程,刚启动一个进程,会自动启动一个线程,进程中的第一个线程是主线程,主线程可以创建子线程,而子线程可以创建更多的线程,它们创建的新线程是独立的 没有隶属关系,而进程不是的。

    唯一的进程标识符是 pid 。

进程与线程的区别?

     1. 线程共享内存空间,进程是独立的。

     2. 同一个进程的进程之间可以直接交流,讲个进程要想通信,需要通过一个中间代理实现。

     3. 创建新线程很简单,创建新进程需要多其父进程进行一次克隆。

    4. 一个线程可以控制和操作同一个进程里的其他线程,但是进程只能操作子进程。

问线程快还是进程快?

     答:两者没有可比性。进程是资源的集合,线程是完成真正任务的,进程要想完成任务也要通过线程所有两者没有可比性。但是启动线程要比启动进程快,因为进程是资源的集合,它要向系统请求开辟一个空间,而进程是指令的集合,不需要系统发指令可以直接执行,所以启动线程比进程快。

python中的多线程不是正在的多线程:

     不管计算机是双核还是四核,它只能在一个核中执行,我们利用python的多线程优势,也就是利用了CPU上下文切换的优势,让我们看上去是并发的效果,其实它只是单线程在执行。

什么时候用多线程呢?怎么提高效率?

     io 操作不占用cpu : 从网络 硬盘 内存 读取的数据。

     计算占用cpu :1+1 ,1*2 等......

     python 多线程 不适合 cpu 密集操作型的任务,适合 io 操作密集型的任务

计算机的一些小知识:

     内存运行比硬盘块 CPU运行比内存快 相当于 往硬盘储存数据就等于骑自行车,向内存里存数据相当于高铁,而往CPU存数据就相当于火箭 。

     不错的内存 (1s :12g) 一秒可以达到 12G的读 。

     CPU的运算 (2.7GHz:2.7E) 每秒钟的单核可以读写 2.7E 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值