Barycentric Coordinates of Tetrahedron (计算四面体的重心坐标)

本文介绍了如何使用点到平面的距离比值法计算四面体的重心坐标,这是一种简洁且高效的方法。通过计算目标点与四面体各面的距离比例,可以确定点是否位于四面体内,以及在四面体外部的位置信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四面体应该是说空间体状结构的最简单形式,只需要四个顶点就可以构成,某些情况下可能需要用四面体来做一些插值之类的操作,或是碰撞检测(比如判断一个点是否在四面体的内部),这些都可以用其重心坐标来成(Barycentric Coordinates)。四面体的重心坐标跟三角形的重心坐标类似,都是找到组成四面体的几个顶点与目标点之间的权重关系,进而来描述该目标点。一般情况下,三角形重心坐标的计算方法是使用对应的子三角形与原始三角形的面积比值来计算;同样,扩展到空间中的四面体的重心坐标就可以用对应的子四面体的体积比值来计算。不过这种方法稍显复杂,最近看到了一种更加简便的方法(但也跟体积比值法类似),使用点到平面的距离比值方法来计算。


首先定义点到平面的有向距离为:D(p , PLabc),其中p、a、b、c均为空间上的点,而PL是由a、b、c三个点所构成的平面,那么对于上图分布的一个四面体以及另外的任意一个点P,可得该点的重心坐标为:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值