大模型(LLM)入门学习路线分享(内含计划表和时间安排)

前言

大模型技术日新月异,但入门时往往缺乏一条清晰详实的学习路线。在这篇博客中,我将结合个人学习经历与广泛收集的资料,分享一份实用的学习计划,希望能为对大模型感兴趣的同学提供指引。无论你是刚接触还是已有基础,让我们一起踏上学习大模型的精彩旅程!!!

同时,博主也会针对这份路线不断更新其中的知识点总结和详解,欢迎大家持续关注我的博客!!!

大模型(LLM)学习路线:从基础到进阶的三个月计划

本文为具备一定数理基础和机器学习基础的学习者设计,旨在提供一条系统化的大模型(LLM)学习路线。计划分为四个阶段,涵盖从基础理论到前沿技术的全面学习内容。


第一阶段:基础巩固与体系构建

学习目标

  • 深入理解Transformer架构
  • 掌握GPT系列模型的演进与核心思想
  • 熟悉Hugging Face工具链

核心内容

  1. Transformer架构
  2. GPT系列模型
  3. 工具学习

实践项目

  • 从零实现Transformer Decoder
  • 使用Accelerate进行多GPU训练实验
  • 对比BERT与GPT的Attention Mask差异

第二阶段:预训练技术与架构进阶

学习目标

  • 掌握现代LLM的核心训练技术
  • 理解高效训练与新型架构设计

核心内容

  1. 高效训练技术
  2. 新型架构
  3. 预训练数据工程
    • 数据质量过滤、混合比例控制
    • 工具:Megatron-LM

实践项目

  • 复现RoPE位置编码的Attention计算
  • 使用Hugging Face Transformers训练小型GPT(1B参数)
  • 构建数据清洗Pipeline(CCNet/RedPajama数据集)

第三阶段:微调技术与应用实践

学习目标

  • 掌握LLM的微调与对齐技术
  • 熟悉模型评估与部署优化

核心内容

  1. 参数高效微调
  2. 对齐技术
  3. 评估与部署
    • 评估工具:HELM、BigBench
    • 部署优化:vLLM、TGI、AWQ量化

实践项目

  • 使用QLoRA微调LLaMA-7B
  • 实现完整的RAG系统(LangChain + FAISS)
  • 使用vLLM部署量化模型

第四阶段:前沿探索与领域深化

学习目标

  • 根据兴趣选择专业方向深入研究
  • 探索LLM在多模态与行业应用中的潜力

可选方向

  1. 模型架构创新
    • 状态空间模型:Mamba架构
    • 混合专家系统:Mixtral 8x7B
  2. 多模态扩展
    • LLaVA视觉语言模型
    • Stable Diffusion 3与LLM融合
  3. 行业应用
    • 金融领域:FinGPT实战
    • 医疗领域:BioGPT应用

实践项目

  • 复现最新arxiv论文(选择1-2篇)
  • 构建完整的AI Agent系统(AutoGPT架构)
  • 参加Kaggle LLM竞赛

时间计划表

时间段学习重点时间分配产出目标
第1-2周Transformer深度解析20小时手写Decoder实现
第3-5周GPT架构与分布式训练30小时1B模型训练实验
第6-8周高效微调技术30小时部署优化方案报告
第9-12周专业方向攻坚60小时领域应用项目

学习资源推荐

视频课程

  1. Stanford CS224n(重点Lectures 10-12)
  2. Full Stack LLM Bootcamp

工具文档

  1. Hugging Face PEFT官方文档
  2. vLLM官方文档

论文包

  1. 微调必读:LoRA | Prompt Tuning
  2. 对齐必读:InstructGPT | DPO

总结

本计划旨在帮助学习者系统掌握大模型的核心技术与应用方法。通过理论与实践相结合的方式,逐步深入LLM的各个领域。建议根据自身兴趣和实际需求,灵活调整学习重点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值