前言
大模型技术日新月异,但入门时往往缺乏一条清晰详实的学习路线。在这篇博客中,我将结合个人学习经历与广泛收集的资料,分享一份实用的学习计划,希望能为对大模型感兴趣的同学提供指引。无论你是刚接触还是已有基础,让我们一起踏上学习大模型的精彩旅程!!!
同时,博主也会针对这份路线不断更新其中的知识点总结和详解,欢迎大家持续关注我的博客!!!
大模型(LLM)学习路线:从基础到进阶的三个月计划
本文为具备一定数理基础和机器学习基础的学习者设计,旨在提供一条系统化的大模型(LLM)学习路线。计划分为四个阶段,涵盖从基础理论到前沿技术的全面学习内容。
第一阶段:基础巩固与体系构建
学习目标
- 深入理解Transformer架构
- 掌握GPT系列模型的演进与核心思想
- 熟悉Hugging Face工具链
核心内容
- Transformer架构:
- 重点:Positional Encoding、Multi-Head Attention的数学推导
- 论文:Attention Is All You Need
- GPT系列模型:
- 对比分析GPT-1/2/3/4的架构与改进
- 论文:Language Models are Few-Shot Learners
- 工具学习:
- Hugging Face生态:Datasets、Tokenizers、Accelerate
- 实践:Hugging Face NLP Course
实践项目
- 从零实现Transformer Decoder
- 使用Accelerate进行多GPU训练实验
- 对比BERT与GPT的Attention Mask差异
第二阶段:预训练技术与架构进阶
学习目标
- 掌握现代LLM的核心训练技术
- 理解高效训练与新型架构设计
核心内容
- 高效训练技术:
- FlashAttention、ZeRO优化、3D并行
- 论文:FlashAttention: Fast and Memory-Efficient Exact Attention
- 新型架构:
- RoPE位置编码、SwiGLU激活函数
- 论文:LLaMA: Open and Efficient Foundation Language Models
- 预训练数据工程:
- 数据质量过滤、混合比例控制
- 工具:Megatron-LM
实践项目
- 复现RoPE位置编码的Attention计算
- 使用Hugging Face Transformers训练小型GPT(1B参数)
- 构建数据清洗Pipeline(CCNet/RedPajama数据集)
第三阶段:微调技术与应用实践
学习目标
- 掌握LLM的微调与对齐技术
- 熟悉模型评估与部署优化
核心内容
- 参数高效微调:
- LoRA、Adapter、Prompt Tuning
- 论文:LoRA: Low-Rank Adaptation of Large Language Models
- 对齐技术:
- RLHF、DPO、RLAIF
- 论文:Training Language Models to Follow Instructions
- 评估与部署:
- 评估工具:HELM、BigBench
- 部署优化:vLLM、TGI、AWQ量化
实践项目
- 使用QLoRA微调LLaMA-7B
- 实现完整的RAG系统(LangChain + FAISS)
- 使用vLLM部署量化模型
第四阶段:前沿探索与领域深化
学习目标
- 根据兴趣选择专业方向深入研究
- 探索LLM在多模态与行业应用中的潜力
可选方向
- 模型架构创新:
- 状态空间模型:Mamba架构
- 混合专家系统:Mixtral 8x7B
- 多模态扩展:
- LLaVA视觉语言模型
- Stable Diffusion 3与LLM融合
- 行业应用:
- 金融领域:FinGPT实战
- 医疗领域:BioGPT应用
实践项目
- 复现最新arxiv论文(选择1-2篇)
- 构建完整的AI Agent系统(AutoGPT架构)
- 参加Kaggle LLM竞赛
时间计划表
时间段 | 学习重点 | 时间分配 | 产出目标 |
---|---|---|---|
第1-2周 | Transformer深度解析 | 20小时 | 手写Decoder实现 |
第3-5周 | GPT架构与分布式训练 | 30小时 | 1B模型训练实验 |
第6-8周 | 高效微调技术 | 30小时 | 部署优化方案报告 |
第9-12周 | 专业方向攻坚 | 60小时 | 领域应用项目 |
学习资源推荐
视频课程
- Stanford CS224n(重点Lectures 10-12)
- Full Stack LLM Bootcamp
工具文档
论文包
- 微调必读:LoRA | Prompt Tuning
- 对齐必读:InstructGPT | DPO
总结
本计划旨在帮助学习者系统掌握大模型的核心技术与应用方法。通过理论与实践相结合的方式,逐步深入LLM的各个领域。建议根据自身兴趣和实际需求,灵活调整学习重点。