大模型(LLM)微调方法分类框架

大模型微调方法可以按照多个维度进行分类。以下是一个系统化的分类框架,结合技术原理、应用场景和资源需求,帮助你理解不同方法的定位和特点:


1. 按微调策略分类

类别核心思想典型方法特点
全参数微调调整模型所有参数(传统微调方式)Fine-tuning资源消耗大,容易过拟合,但性能上限高
参数高效微调冻结主模型参数,仅调整少量新增参数LoRA、Adapter、Prefix-Tuning节省显存和计算资源,适合资源受限场景
提示学习通过设计输入模板(Prompt)引导模型输出Prompt Tuning、P-Tuning无需修改模型结构,依赖Prompt工程
强化学习微调结合人类反馈或奖励模型优化生成结果RLHF、PPO适合对齐人类价值观(如ChatGPT),训练复杂度高
知识蒸馏用大模型指导小模型训练DistilBERT、TinyBERT压缩模型体积,适合部署到边缘设备

2. 按参数效率分类

类别参数调整比例示例方法适用场景
全参数调整100%Full Fine-tuning资源充足,追求最高性能
部分参数调整<10%LoRA、Adapter资源有限,多任务适配
零参数调整0%Prompt Tuning黑盒模型,无法修改参数

3. 按任务类型分类

类别适用任务典型方法特点
单任务微调单一任务优化(如文本分类)Full Fine-tuning、LoRA专注特定任务性能提升
多任务联合微调同时优化多个相关任务Multi-Task Learning (MTL)提升模型泛化能力,需任务间相关性高
持续学习逐步学习新任务而不遗忘旧任务EWC、Replay-based Methods解决灾难性遗忘问题

4. 按监督信号来源分类

类别监督信号类型示例方法特点
有监督微调人工标注数据传统Fine-tuning依赖标注质量,成本高
弱监督/自监督自动生成标签或利用模型自身输出STF、Self-Training减少人工标注依赖
人类反馈强化学习人类对模型输出的偏好评分RLHF、RRHF对齐人类意图,适合对话和生成任务

5. 按领域适配性分类

类别目标典型方法应用场景
通用领域微调提升模型通用能力Full Fine-tuning通用任务(如GLUE基准)
垂直领域适配适配特定领域(医疗、法律等)Domain-Adaptive PT需领域数据,解决领域术语和知识差异

6. 按模型修改程度分类

类别修改内容示例方法灵活性
结构修改型添加新模块(如Adapter层)Adapter、LoRA需调整模型结构
参数扰动型在原参数上引入低秩变换或稀疏化Diff Pruning、BitFit无需修改结构,直接操作参数
输入引导型仅修改输入(Prompt)Prompt Tuning完全保持原模型不变

学习建议

  1. 基础入门:从全参数微调(Fine-tuning)和参数高效方法(如LoRA)开始,理解微调的本质。
  2. 对比实验:在相同任务上尝试不同方法(如LoRA vs Adapter),分析显存、速度和性能差异。
  3. 领域深入:选择垂直领域(如医疗文本)实践领域适配方法(Domain-Adaptive Tuning)。
  4. 进阶探索:研究RLHF和持续学习,解决对齐与遗忘问题。

方法选择指南

  • 资源有限 → 参数高效微调(LoRA/Adapter)
  • 黑盒模型 → 提示学习(Prompt Tuning)
  • 人类反馈 → RLHF/RRHF
  • 多任务需求 → 多任务联合微调
  • 模型压缩 → 知识蒸馏

通过这个框架,你可以快速定位不同方法的适用场景和技术特点,逐步构建系统化的知识体系。

### 关于LLM微调的实现 以下是基于现有开源资源和理论基础构建的一个简单的LLM微调示例代码。此代码展示了如何利用Hugging Face Transformers库对预训练模型进行有监督微调。 #### 使用Transformers库进行LLM微调的Python代码 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch from datasets import load_dataset # 加载预训练模型及其分词器 model_name = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # 准备数据集 (假设我们有一个自定义的数据集用于微调) dataset = load_dataset('json', data_files='path_to_your_data.json') # 替换为实际路径 def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # 设置设备(GPU/CPU) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model.to(device) # 定义优化器和损失函数 optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) # 训练循环 for epoch in range(3): # 假设训练三个epoch model.train() for batch in tokenized_datasets["train"]: inputs = {key: val.to(device) for key, val in batch.items()} outputs = model(**inputs, labels=inputs["input_ids"]) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() print("Fine-tuning completed.") ``` 上述代码片段展示了一个基本的工作流,其中包括加载预训练模型、准备数据集以及执行微调的过程[^4]。需要注意的是,在实际应用中可能还需要调整超参数并引入验证机制以评估性能改进情况。 #### 开源项目推荐 对于那些希望快速启动项目的开发者来说,可以直接参考一些已经公开分享出来的经过微调处理后的LLMs实例列表[^2]。例如Geek Culture博客文章列举了一系列可供下载使用的版本链接地址;另外像AdaLoRA这样的技术框架也提供了高效解决方案,它采用低秩适应策略减少计算成本同时保持良好表现效果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值