开发背景与意义一重点(8K)
现状分析
自动分拣系统是物料搬运系统的一个重要分支,广泛应用于各个行业的生产物流系统或物流配送中心。
市场调研
市场分析
在该公司生产中,工件的上料和下料基本是以人为主导,这使得人力成本在工厂的总生产成本中占比较大,且人力搬运相较于机器搬运效率低下,长期工作对工人的身体健康产生危害。
应用前景
在市场应用方面,随着物流业快速发展,特别是电商、快递等行业的业务爆发,以及人力成本不断上升,自动化输送分拣装备市场出现爆炸式增长。
经济效益
自动分拣系统的初期投资较大,但可以提高分拣效率、减少人力成本、拓展市场,从长远来看具有较好的经济效益。
-
提升生产效率:自动分拣系统可以实现24小时不间断的高效分拣操作,提升生产效率,缩短订单处理周期,提高企业的生产能力和市场竞争力。
-
降低成本:自动分拣系统可以减少人力成本、提高分拣准确率,降低错误率和损耗率,从而降低企业的运营成本,提升盈利能力。
-
拓展市场:通过提高分拣效率和服务质量,自动分拣系统可以提升客户满意度,拓展市场份额,增加企业的盈利空间,促进企业的可持续发展。
社会效益
-
提升就业质量:自动分拣系统可以减少人工分拣的重复性劳动,提高工作效率,从而释放人力资源用于更高附加值的工作,提升就业质量。
-
减少劳动强度:自动分拣系统可以减少人工分拣过程中的劳动强度,减少工人受伤和疲劳的风险,提升员工的工作环境和健康水平。
-
促进产业升级:自动分拣系统的应用可以提升企业的生产效率和竞争力,促进产业升级和转型,推动整个产业链的发展。
研制意义
综合经济效益和社会效益,我们可以得出,研制服装分拣自动化可以助力该企业降本增效,增强企业的竞争力,并且符合国家的“高端智造”发展战略。
功能分析与设计一原由和方法(5K)
需求分析
研发服装分拣机械臂系统,实现服装的自动分拣;研发自动拣取算法系统,识别衣物。
-
搬运速度:约1500件/h
-
工作范围:约2.3m^2
-
料箱尺寸:0.4m×0.6m×0.34m
硬件需求
识别:双目相机、工控机
抓取:末端抓取机构、定位辅助装置
扫码:工业相机
搬运:工业机械臂
软件需求
未明显提出
设计方案
硬件设计方案(选型与选料)
ZED双目相机
利用ZED双目深度相机进行料箱、衣服的识别及YOLO模型的部署,并辅助进行料箱子高度的检测。
ZED双目相机能够利用神经网络构建立体视觉,获取物体的深度信息,便于机械臂的抓取。
工控机
ZED双目相机对工控机的性能要求: CPU RAM大于4GB,GPU 内存大于2GB,GPU 算力大于3 TFLOPs。选用8G内存、GeForce GTX 1060工控机。
工业机械臂
机械臂选型采用伯朗特BRTIRUS1510A六轴机械臂,能够适应实际工厂的抓取要求,其主要参数如下: 臂展:1500mm; 重复定位精度:±0.05mm; 最大负载:10kg; 电源容量:5.7kVA; 机械臂重量:152kg
末端抓取机构
辅助定位装置
相比于超声模块,激光测距模块受环境影响小,能够更准确地获取箱子中衣物的高度,通过比较,选用SK-A100激光测距模块作为辅助定位。
软件设计方案
待补充
技术指标一对比(2K)
通用标准(已有规范:国际标准、国家标准、行业指标)
待查
预期指标
-
服装分拣速度达到1分钟10次。
-
服装标签内容识别准确率达到95%以上。
-
服装拣取系统每天连续无故障运行12小时以上。
系统实现一过程(5K)
协同过程
通信
建立主机和机械臂的通信,实现通过程序传输机械臂指令
识别
机器视觉,包括服装轮廓识别和服装条形码识别
定位
坐标系转换,像素坐标到机械臂世界坐标的转换
抓取
抓放控制,包括机械臂选择和末端选择
软件实现
物体识别
Yolov5,两种策略(顺序优先、高度优先)
条形码识别
Zbar
硬件实现
定位
定位的目的:(2D->3D)将识别得到的像素平面中的待抓取点(服装中心)转换到真实世界的机械臂坐标中。
定位的方法:1.相机标定得到相机内参;2.手眼标定得到相机外参;3.矩阵运算。
抓放
抓放控制的目的:在得到真实世界中的目标点坐标之后,需要控制机械臂安全流畅的到达目标点,并完成抓取和摆放。
抓放控制的相关工作:1.发送指令控制机械臂移动;2.路径规划 安全高效的移动;3.抓取末端的选择和控制。
系统测试一分析(2K)
问题和经验那一块儿改一改可以用:把问题弄成测试方案,把经验弄成测试报告
测试方案
待补充
测试报告(分析)
待补充