学习 《神经网络与深度学习》 笔记6

2019年6月5日 晚上9点30分

反向传播四个基本方程的证明

第一个方程

我们定义了

\delta _{j}^{L}=\frac{\partial C}{\partial z_{j}^{L}}

应用链式法则,我们可以重写上面的等式得到

\delta _{j}^{L}=\sum_{}^{k}\frac{\partial C}{\partial a_{k}^{L}}\frac{\partial a_{k}^{L}}{\partial z_{j}^{L}}

这是在输出层所有神经元k上运行的。当然,第k个神经元的输出激活值a_{k}^{L}只依赖于当k=j时第j个神经元的输入权重z_{j}^{L}。所以当k≠j时,\frac{\partial a_{k}^{L}}{\partial z_{j}^{L}}就消失。

于是我们可以简化上面的等式为:

\delta _{j}^{L}=\frac{\partial C}{\partial a_{k}^{L}}\frac{\partial a_{k}^{L}}{\partial z_{j}^{L}}

又因为a_{j}^{L}=\sigma (z_{j}^{L}),所以

\delta _{j}^{L}=\frac{\partial C}{\partial a_{k}^{L}}{\sigma }'(z_{j}^{L})

第二个方程

因为\delta _{k}^{l+1}=\partial C/\partial z_{k}^{l+1},我们重新写一下\delta _{j}^{l}=\partial C/\partial z_{j}^{l},应用链式法则可以得到

\delta _{j}^{l}=\frac{\partial C}{\partial z_{j}^{l}}=\sum \frac{\partial C}{\partial z_{k}^{l+1}}\frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}}=\sum \frac{\partial C}{\partial z_{j}^{l}}\delta _{k}^{l+1}

另外我们有关于上式的分量形式:

因为z_{k}^{l+1}=\sum \omega _{kj}^{l+1}a_{j}^{l}+b_{k}^{l+1}=\sum \omega _{kj}^{l+1}\sigma( z_{j}^{l})+b_{k}^{l+1}

两边同时做微分得到

\frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}}=\omega _{kj}^{l+1}{\sigma }'(z_{j}^{l})

代入\delta _{j}^{l}=\sum \frac{\partial C}{\partial z_{j}^{l}}\delta _{k}^{l+1}得到

\delta _{j}^{l}=\sum \omega _{kj}^{l+1}\delta _{k}^{l+1}{\sigma }'(z_{j}^{l})

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值