机器学习入门 4

文章介绍了神经网络的基本结构,包括输入层、隐藏层和输出层,强调了隐藏层的选择和激活函数(如Sigmoid)在神经元计算中的作用。此外,还概述了前向传播算法,描述了信息如何从左至右通过网络进行计算,最终达到预测的目的。
摘要由CSDN通过智能技术生成

今天终于开始学神经网络啦!

需求预测

a:表示激活。一个神经元发送了多少对下游其他神经元的高输出

 

神经元:用价格x作为输入,计算f(x)输出

神经网络的结构(多层感知器)

分为输入层 隐藏层 输出层

要选择合适的隐藏层数和每层的隐藏单元数

 

工作原理

 

 

第l层第j个神经元的输出

 

g: Sigmoid函数 在神经网络中被称为激活函数

神经网络预测

 

前向传播算法:神经元的激活从左到右的向前方向进行计算

单元数随着越来越接近输出层而减少

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值