评估机器学习模型性能的方法及源代码

机器学习模型的性能评估是确定模型对于给定任务的准确性和可靠性的关键步骤。以下是一些常用的评估方法及其对应的Python源代码示例:

  1. 划分数据集
    在评估模型性能之前,需要将数据集划分为训练集和测试集。训练集用于模型的训练,而测试集用于评估模型的性能。常见的划分方法是随机划分或者交叉验证。

    from sklearn.model_selection import train_test_split
    
    # 假设X是特征向量,y是目标变量
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值