机器学习模型的性能评估是确定模型对于给定任务的准确性和可靠性的关键步骤。以下是一些常用的评估方法及其对应的Python源代码示例:
-
划分数据集
在评估模型性能之前,需要将数据集划分为训练集和测试集。训练集用于模型的训练,而测试集用于评估模型的性能。常见的划分方法是随机划分或者交叉验证。from sklearn.model_selection import train_test_split # 假设X是特征向量,y是目标变量 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size