ROUGE详解:基于机器学习的文本相似度评估指标

ROUGE是自然语言处理中用于衡量自动生成摘要与参考摘要相似度的指标,基于召回率概念。主要包括ROUGE-N、ROUGE-L和ROUGE-S,分别通过n-gram、最长公共子序列和Skip-bigram来评估。ROUGE在文本摘要评估中广泛应用,有助于分析自动摘要算法的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在自然语言处理和文本摘要领域,ROUGE(Recall-Oriented Understudy for Gisting Evaluation)是一组用于评估自动生成的摘要或摘录与参考摘要之间相似度的指标。ROUGE指标主要基于召回率(Recall)的概念,用于衡量自动生成的摘要中包含了多少关键信息和重要文本片段。本文将详细介绍ROUGE指标的基本概念和使用方法,并提供相应的源代码示例。

ROUGE指标主要包括ROUGE-N、ROUGE-L和ROUGE-S。其中,ROUGE-N衡量自动生成的摘要与参考摘要之间的n-gram重叠情况,ROUGE-L基于最长公共子序列(Longest Common Subsequence)衡量两个摘要之间的重叠程度,ROUGE-S则是基于Skip-bigram(跳跃二元组)的概念,用于衡量两个摘要之间的相似度。

下面是一个使用Python计算ROUGE指标的示例代码:

from nltk.util import ngrams
from nltk.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值