计算物理基础(彭芳麟)

第二章课后习题3、习题4

习题3 科赫曲线

clc
clear all
close all

new = [0,1i];
subplot(2,2,1);
plot(new)
axis equal
for k = 1:3
    old = new;
    n = length(old)-1;  %线段总数比节点数少1
    diff = (old(2:n+1)-old(1:n))/3;  %将每条线段三等分
    new(1:4:4*n-3) = old(1:n);  %起点坐标
    new(2:4:4*n-2) = old(1:n)+diff;  %插入点P1坐标
    new(3:4:4*n-1) = new(2:4:4*n-2)+diff*((1+sqrt(3)*1i)/2);  %插入点P2坐标
    new(4:4:4*n) = old(1:n)+2*diff;  %插入点P3坐标
    new(4*n+1) = [1i];  %终点坐标
    subplot(2,2,k+1);
    plot(new)
    axis equal
end

 习题4 Minkowski曲线

clc
clear all
close all
new=[0,1];
subplot(2,2,1);
axis([0,1,-0.5,0.5]);
axis equal
for k = 1:4
    old = new;
    n = length(old)-1;  %线段总数比节点数少1
    diff = (old(2:n+1)-old(1:n))/4;  %将每条线段四等分
    p1 = old(1:n)+diff;
    p2 = p1+diff*(i);
    p3 = p2+diff;
    p4 = p3-diff*2*(i);
    p = p3-diff*(i);
    p5 = p4+diff;
    p6 = p5+diff*(i);
    new(1:15:15*n-14) = old(1:n);
    new(2:15:15*n-13) = p1;
    new(3:15:15*n-12) = p1;
    new(4:15:15*n-11) = p2;
    new(5:15:15*n-10) = p2;
    new(6:15:15*n-9) = p3;
    new(7:15:15*n-8) = p;
    new(8:15:15*n-7) = p;
    new(9:15:15*n-6) = p4;
    new(10:15:15*n-5) = p4;
    new(11:15:15*n-4) = p5;
    new(12:15:15*n-3) = p5;
    new(13:15:15*n-2) = p6;
    new(14:15:15*n-1) = p6;
    new(15:15:15*n) =  old(2:end);
    subplot(2,2,k)
    plot(new)
    axis([0,1,-0.5,0.5]);
end
 

 

### 回答1: 彭芳麟.数学物理方程的MATLAB解法与可视化PDF是一种将数学物理方程通过MATLAB编程进行求解并将结果可视化为PDF格式的方法。 MATLAB是一种强大的数值计算和科学工程编程语言,可以用于解决各种数学物理问题。彭芳麟使用MATLAB编写程序来求解各种不同的数学物理方程,如微分方程、偏微分方程、线性代数方程等。 对于给定的数学物理方程,彭芳麟首先将其离散化为一系列的差分方程或代数方程。然后,他使用MATLAB内置的数值计算方法,如欧拉法、龙格-库塔法、有限差分法等来求解这些方程。 使用MATLAB求解数学物理方程能够提供高精度的数值解,并且可以根据问题的需求进行自定义的程序设计。彭芳麟可以根据具体的问题进行数值实验,通过调整不同的参数,研究方程的性质和解的特征。 在得到数值解之后,彭芳麟将结果通过MATLAB中的绘图函数,如plot、contour、surf等进行可视化。他可以绘制曲线、等高线图和三维图等,将解的变化和特性直观地展示出来。 通过将可视化结果保存为PDF格式,彭芳麟可以将研究结果以一种易于分享和传播的方式呈现给其他人。PDF格式的文件可以在不同的设备上进行查看,并且不会改变原始的布局和格式。 总而言之,彭芳麟通过使用MATLAB解法和可视化为PDF格式,为数学物理方程的研究和应用提供了一种高效、准确且直观的方法。这种方法可以帮助研究者更好地理解和分析各种数学物理问题,并为实际应用提供有力的支持。 ### 回答2: 彭芳麟是一个科学家和数学家,他在数学物理方程的matlab解法与可视化pdf方面做出了重要贡献。 首先,彭芳麟利用matlab编程语言开发了一套解决数学物理方程的工具包。这个工具包包括了许多常见的数学物理方程的解析和数值解法,可以帮助科学家和工程师们更好地理解和解决复杂的数学物理问题。通过这个工具包,用户可以输入数学物理方程的初始条件和参数,然后得到方程的解析解或数值解。这对于研究领域中的数学建模和物理实验具有重要意义。 其次,彭芳麟还开发了一种将数学物理方程解析和解决结果可视化为pdf文件的方法。这个方法可以将数学物理方程的解析解或数值解以可视化形式呈现,使得用户可以更直观地理解和分析解决方案。通过这种可视化方法,科学家和工程师们可以更清晰地观察数学物理方程的特性和变化趋势,并可以更好地与实际问题相结合。 彭芳麟matlab解法和可视化pdf方法为数学物理方程的解决提供了更方便和高效的工具,对于科学研究和工程应用具有重要意义。他的工作不仅在学术界受到认可,也对许多行业的发展起到了积极的推动作用。 ### 回答3: 彭芳麟,数学物理方程的MATLAB解法与可视化PDF是一种用于解决数学物理问题的工具。MATLAB是一种强大的科学计算软件,可用于解析求解方程、进行数值计算和绘制图形。通过MATLAB彭芳麟可以编写程序来解决数学物理方程,并使用其中的数值计算库函数来实现求解过程。 使用MATLAB解决数学物理方程的一般步骤如下: 1. 确定待解的数学物理方程。 2. 将方程转化为MATLAB可解析的形式,包括确定方程中的变量和参数。 3. 编写MATLAB程序,将方程表示为等式,并使用数值计算方法求解。 4. 运行程序,得到方程的解。 5. 根据需要,进行解的可视化,比如绘制出方程的图像、等高线图等。 使用MATLAB进行可视化时,可以使用其绘图函数对解进行可视化呈现。比如,可以使用plot函数绘制出函数曲线,使用surf函数绘制出三维曲面,使用contour函数绘制出等高线图等。通过可视化,彭芳麟可以直观地观察解的特点和变化趋势,进一步分析和理解数学物理问题。 另外,彭芳麟还可以将解和图形输出为PDF格式,以便与其他人分享。MATLAB提供了保存图形为PDF文件的函数,可以将解和图形保存为PDF文件,方便彭芳麟与其他研究者进行交流和讨论。 综上所述,MATLAB解法与可视化PDF是彭芳麟用于解决数学物理方程的工具。通过使用MATLAB编写程序求解方程,并通过可视化和保存结果为PDF文件,彭芳麟可以更方便地进行数学物理问题的研究和交流。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值