TOPSIS法

TOPSIS 法:多属性决策的有效工具

在多属性决策分析领域,TOPSIS 法(Technique for Order Preference by Similarity to Ideal Solution)是一种广泛应用且极具价值的方法。它为解决复杂的决策问题提供了一种系统、科学的途径,尤其在面临多个评价对象和多个评价指标时,能够帮助决策者清晰地辨别各方案的优劣,从而做出更为合理的抉择。

一、TOPSIS 法的基本原理

TOPSIS 法的核心思想是基于这样一种直观的概念:在多属性决策中,最优的方案应该是与理想解(正理想解)的距离最近,同时与负理想解的距离最远。所谓理想解,是在各个评价指标上都达到最优值的虚拟方案;而负理想解则是在各个评价指标上都处于最差值的虚拟方案。

具体而言,该方法首先需要构建规范化的决策矩阵。这一步骤旨在消除不同评价指标因量纲和数量级差异而带来的影响,使得各个指标能够在同一尺度上进行比较。例如,在对不同企业的绩效进行评价时,可能涉及到利润(以货币单位衡量)、市场份额(以百分比表示)、员工满意度(以得分表示)等多个指标,通过规范化处理,将它们转化为具有可比性的数值。

接着,确定正理想解和负理想解。正理想解是每个指标在所有方案中的最大值所构成的向量,负理想解则是每个指标在所有方案中的最小值所构成的向量。然后,计算每个方案到正理想解和负理想解的距离。这里的距离度量通常采用欧几里得距离或其他合适的距离公式。

最后,根据各方案到正理想解和负理想解的相对距离,计算每个方案的贴近度。贴近度越大的方案,表明其越接近正理想解,越远离负理想解,从而在多属性决策中越具有优势。通过对贴近度进行排序,即可确定各个方案的优劣顺序,为决策者提供清晰的决策依据。
在这里插入图片描述

二、TOPSIS 法的详细步骤

在这里插入图片描述
S i = D i − / ( D i + + D i − ) Si = Di^-/(Di^+ + Di^-) Si=Di/(Di++Di)
S i Si Si: 得分
D i − Di^- Di: 与最小值距离
D i + Di^+ Di+: 与最大

### TOPSIS 概述 TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) 是一种常用的多属性决策分析方,旨在通过计算每个备选方案与理想解和负理想解之间的距离来进行评估。这种方能够有效处理多个目标或属性下的复杂决策问题。 #### 方原理 该技术的核心在于识别两个极端点:一个是理想的最优解决方案(正理想解),另一个则是最差情况的代表(负理想解)。对于每一个待评选项而言,会分别测量其到这两个极值位置间的欧氏几何间距,并据此得出相对贴近度指标[^1]。 ```python import numpy as np def topsis_method(decision_matrix, weights, criteria_types): """ :param decision_matrix: 决策矩阵(m×n),其中m表示候选方案数量,n为属性数目. :param weights: 权重向量(n维). :param criteria_types: 属性类型列表('max' 或 'min'). 返回按综合得分排序后的索引序列以及对应的分数。 """ # 向量化标准化 normed_decision_matrix = normalize_matrix(decision_matrix) # 加权乘积模型构建加权规范阵 C=(c_ij)_mxn weighted_normed_dm = apply_weights(normed_decision_matrix, weights) # 计算正/负理想解 positive_ideal_solution, negative_ideal_solution = calculate_ideals(weighted_normed_dm, criteria_types) # 距离计算 distances_to_pis, distances_to_nis = compute_distances(weighted_normed_dm, positive_ideal_solution, negative_ideal_solution) # 综合评价指数 SI_i 的计算 closeness_coefficients = get_closeness_coefficient(distances_to_pis, distances_to_nis) sorted_indices = np.argsort(closeness_coefficients)[::-1] return sorted_indices.tolist(), closeness_coefficients[sorted_indices].tolist() ``` ### 熵权 TOPSIS 详解 熵权 TOPSIS 结合则引入了信息论中的熵概念来自动确定各属性的重要性水平,从而克服传统 Topsis 中人为指定权重可能引发的偏见问题。具体来说,在此过程中先利用熵测度衡量每项特征所携带的信息量大小,再依此调整相应维度上的比重参数[^2]。 #### 实现流程 - **数据预处理**:对原始输入表单执行必要的清理工作,比如缺失值填补、异常检测等操作; - **属性值归一化**:采用合适的方式将不同尺度的数据转换成统一标准形式以便后续比较; - **熵权分配**:基于样本分布特性动态设定各项评判准则在整个体系里占据的比例关系; - **理想解定位**:参照前述说明建立最佳及最糟情形下理论极限坐标系; - **相似性评测**:运用欧式或其他适当距离函数定量刻画实际观测点同上述两者的远近差异程度; - **结果解释**:最终输出排序清单并附带置信区间估计供进一步解读参考[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值