R语言基于glmnet构建分类模型并可视化特征系数以及L1正则化系数实例

40 篇文章 ¥59.90 ¥99.00
本文通过实例演示如何在R语言中利用glmnet库构建分类模型,重点讲解如何可视化特征系数和L1正则化系数。首先介绍安装和加载glmnet库,接着使用乳腺癌数据集划分训练测试集,然后构建分类模型,并展示特征系数和L1正则化系数随正则化参数变化的图表,最后评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言基于glmnet构建分类模型并可视化特征系数以及L1正则化系数实例

在机器学习中,构建分类模型是一个重要的任务。而L1正则化作为一种常见的正则化方式,在特征选择和模型解释方面具有重要意义。本文将介绍如何使用R语言中的glmnet库来构建分类模型,并展示如何可视化特征系数以及L1正则化系数。

首先,我们需要安装并加载glmnet库。可以通过以下命令安装:

install.packages("glmnet")
library(glmnet)

接下来,我们将使用一个示例数据集来演示。这里我们选用UCI机器学习库中的"The Breast Cancer Wisconsin (Diagnostic) DataSet"数据集作为示例。可以使用以下代码加载该数据集:

data <- read.csv("wdbc.csv")

数据集包含了569个样本和31个特征,其中特征“diagnosis”代表了目标变量。我们的目标是根据这些特征来预测乳腺癌的诊断结果。

接下来,我们将数据集分成训练集和测试集,代码如下:

set.seed(123)
train_index <- sample(1:nrow(data), 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值