R语言基于glmnet构建分类模型并可视化特征系数以及L1正则化系数实例
在机器学习中,构建分类模型是一个重要的任务。而L1正则化作为一种常见的正则化方式,在特征选择和模型解释方面具有重要意义。本文将介绍如何使用R语言中的glmnet库来构建分类模型,并展示如何可视化特征系数以及L1正则化系数。
首先,我们需要安装并加载glmnet库。可以通过以下命令安装:
install.packages("glmnet")
library(glmnet)
接下来,我们将使用一个示例数据集来演示。这里我们选用UCI机器学习库中的"The Breast Cancer Wisconsin (Diagnostic) DataSet"数据集作为示例。可以使用以下代码加载该数据集:
data <- read.csv("wdbc.csv")
数据集包含了569个样本和31个特征,其中特征“diagnosis”代表了目标变量。我们的目标是根据这些特征来预测乳腺癌的诊断结果。
接下来,我们将数据集分成训练集和测试集,代码如下:
set.seed(123)
train_index <- sample(1:nrow(data), 0