knn (machine in action

环境:  python 3.5

说明:包含一些调试过程中的注释。

核心点: 对list 及array的使用。


from numpy import *
import operator
import matplotlib.pyplot as plt


#define function to generate labels and group
def createDataSet():
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels=['A','A','B','B']
    return group,labels


#define function to classify the object
def classify0(inX,dataSet,labels,k):
    #Distance calculation
    dataSetSize=dataSet.shape[0]
    diffMat=tile(inX,(dataSetSize,1))-dataSet
    sqDiffMat=diffMat**2
    sqDistances=sqDiffMat.sum(axis=1)# to sum by the row
    distances=sqDistances**0.5
    sortedDistIndicies=distances.argsort() # important how to use argsort to return the index of elements(from small to bigger)
    print(len(sortedDistIndicies))
    print("the k is %s"%k)
    #print("the labels is %s" %labels)
    #Voting with lowest  k distances
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
        
    #Sort dictionary
    sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]


    
    
#define functrion to parse files
def file2matrix(filename,dim2):
    fr=open(filename)
    #Get number of lines in file
    numberOfLines=len(fr.readlines())
    #Create NumPy  matrix to return
    returnMat=zeros((numberOfLines,dim2))
    classLabelVector=[]
    fr=open(filename)
    index=0
    #Parse line to a list
    for line in fr.readlines():
        line=line.strip()
        listFromLine=line.split('\t')
        returnMat[index,:]=listFromLine[0:dim2]
        classLabelVector.append(str(listFromLine[-1]))
        index+=1
        if index==1:
            print(listFromLine)
    return returnMat,classLabelVector
    
    
#define function to normalize the data
def autoNorm(dataSet):
    minVals=dataSet.min(0)
    maxVals=dataSet.max(0)
    ranges=maxVals-minVals
    normDataSet=zeros(shape(dataSet))
    m=dataSet.shape[0]
    normDataSet=dataSet-tile(minVals,(m,1))
    normDataSet=normDataSet/tile(ranges,(m,1))
    return normDataSet,ranges,minVals


#Classifier testing code for dating site


def datingClassTest():
    hoRatio=0.10
    datingDataMat,datingLabels=file2matrix('datingTestSet.txt',3)
    normMat,ranges,minVals=autoNorm(datingDataMat)
    m=normMat.shape[0]
    numTestVecs=int(m*hoRatio)
    errorCount=0.0
    for i in range(numTestVecs):
        classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print("the classifier came back with:%d,the real anser is:%d"%(classifierResult,datingLabels[i]))
        if (classifierResult!=datingLabels[i]):
            errorCount+=1.0
        print("the total error rate is:%f"%(errorCount/float(numTestVecs)))
        
        
        
#Dating site predictor function
def classifyPerson():
    resultList=['not at all','in small doses','in large doses']
    percentTats=float(input("percentage of time spent playing video games?"))
    ffMiles=float(input("frequent flier miles earned per year?"))
    iceCream=float(input("liters of ice cream consumed per year?"))
    datingDataMat,datingLabels=file2matrix('data/datingTestSet2.txt',3)
    #print("the datingLabels is %s"%datingLabels)
    normMat,ranges,minVals=autoNorm(datingDataMat)
    inArr=array([ffMiles,percentTats,iceCream])
    classifierResult=classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
    #print(classifierResult)
    print("You will probably like this person: ",resultList[int(classifierResult)-1])
    
    
    


if __name__=="__main__":
    datingDataMat,datingLabels=file2matrix('data/datingTestSet2.txt',3)
    fig=plt.figure()
    ax=fig.add_subplot(211)
    labels=array(datingLabels)
    labels=labels.astype('float64')# to avoid error in scatter
    classifyPerson()
#    plt.title("Icecreame and videogames")
#    plt.xlabel("Liters of Ice Cream Consumed Per Week")
#    plt.ylabel("Percentage of Time Spent Playing Video Games")
#    ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*labels,15.0*labels)
 
    
 #   ax=fig.add_subplot(2,2,2)
#    plt.title("Icecreame and videogames")
#    plt.xlabel("Percentage of Time Spent Playing Video Games")
#    plt.ylabel("frequent fLYIER miles Earned Per Year")
#    ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*labels,15.0*labels)
#   plt.show()



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值