本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找。
强烈推荐ipython
无论你工作在什么项目上,IPython都是值得推荐的。利用ipython --pylab
,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能。
这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK)。对于大部分用户而言,默认的后端就已经够用了。Pylab模式还会向IPython引入一大堆模块和函数以提供一种更接近MATLAB的界面。
参考
1
2
3
4
5
6
7
8
|
import
matplotlib
.
pyplot
as
plt
labels
=
'frogs'
,
'hogs'
,
'dogs'
,
'logs'
sizes
=
15
,
20
,
45
,
10
colors
=
'yellowgreen'
,
'gold'
,
'lightskyblue'
,
'lightcoral'
explode
=
0
,
0.1
,
0
,
0
plt
.
pie
(
sizes
,
explode
=
explode
,
labels
=
labels
,
colors
=
colors
,
autopct
=
'%1.1f%%'
,
shadow
=
True
,
startangle
=
50
)
plt
.
axis
(
'equal'
)
plt
.
show
(
)
|
matplotlib图标正常显示中文
为了在图表中能够显示中文和负号等,需要下面一段设置:
1
2
3
|
import
matplotlib
.
pyplot
as
plt
plt
.
rcParams
[
'font.sans-serif'
]
=
[
'SimHei'
]
#用来正常显示中文标签
plt
.
rcParams
[
'axes.unicode_minus'
]
=
False
#用来正常显示负号
|
matplotlib inline和pylab inline
可以使用ipython --pylab
打开ipython命名窗口。
1
2
3
|
%
matplotlib
inline
#notebook模式下
%
pylab
inline
#ipython模式下
|
这两个命令都可以在绘图时,将图片内嵌在交互窗口,而不是弹出一个图片窗口,但是,有一个缺陷:除非将代码一次执行,否则,无法叠加绘图,因为在这两种模式下,是要有plt
出现,图片会立马show
出来,因此:
推荐在ipython notebook时使用,这样就能很方便的一次编辑完代码,绘图。
为项目设置matplotlib参数
在代码执行过程中,有两种方式更改参数:
- 使用参数字典(rcParams)
- 调用matplotlib.rc()命令 通过传入关键字元祖,修改参数
如果不想每次使用matplotlib时都在代码部分进行配置,可以修改matplotlib的文件参数。可以用matplot.get_config()
命令来找到当前用户的配置文件目录。
配置文件包括以下配置项:
axex: 设置坐标轴边界和表面的颜色、坐标刻度值大小和网格的显示
backend: 设置目标暑促TkAgg和GTKAgg
figure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置
font: 字体集(font family)、字体大小和样式设置
grid: 设置网格颜色和线性
legend: 设置图例和其中的文本的显示
line: 设置线条(颜色、线型、宽度等)和标记
patch: 是填充2D空间的图形对象,如多边形和圆。控制线宽、颜色和抗锯齿设置等。
savefig: 可以对保存的图形进行单独设置。例如,设置渲染的文件的背景为白色。
verbose: 设置matplotlib在执行期间信息输出,如silent、helpful、debug和debug-annoying。
xticks和yticks: 为x,y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。
线条相关属性标记设置
用来该表线条的属性
线条风格linestyle或ls | 描述 | 线条风格linestyle或ls | 描述 | |
---|---|---|---|---|
‘-‘ | 实线 | ‘:’ | 虚线 | |
‘–‘ | 破折线 | ‘None’,’ ‘,” | 什么都不画 | |
‘-.’ | 点划线 |
线条标记
标记maker | 描述 | 标记 | 描述 | |
---|---|---|---|---|
‘o’ | 圆圈 | ‘.’ | 点 | |
‘D’ | 菱形 | ‘s’ | 正方形 | |
‘h’ | 六边形1 | ‘*’ | 星号 | |
‘H’ | 六边形2 | ‘d’ | 小菱形 | |
‘_’ | 水平线 | ‘v’ | 一角朝下的三角形 | |
‘8’ | 八边形 | ‘ | 一角朝左的三角形 | |
‘p’ | 五边形 | ‘>’ | 一角朝右的三角形 | |
‘,’ | 像素 | ‘^’ | 一角朝上的三角形 | |
‘+’ | 加号 | ‘ | ‘ | 竖线 |
‘None’,”,’ ‘ | 无 | ‘x’ | X |
颜色
可以通过调用matplotlib.pyplot.colors()
得到matplotlib支持的所有颜色。
别名 | 颜色 | 别名 | 颜色 | |
---|---|---|---|---|
b | 蓝色 | g | 绿色 | |
r | 红色 | y | 黄色 | |
c | 青色 | k | 黑色 | |
m | 洋红色 | w | 白色 |
如果这两种颜色不够用,还可以通过两种其他方式来定义颜色值:
- 使用HTML十六进制字符串
color='eeefff'
使用合法的HTML颜色名字(’red’,’chartreuse’等)。 - 也可以传入一个归一化到[0,1]的RGB元祖。
color=(0.3,0.3,0.4)
很多方法可以介绍颜色参数,如title()。plt.tilte('Title in a custom color',color='#123456')
背景色
通过向如matplotlib.pyplot.axes()
或者matplotlib.pyplot.subplot()
这样的方法提供一个axisbg
参数,可以指定坐标这的背景色。
subplot(111,axisbg=(0.1843,0.3098,0.3098)
基础
如果你向plot()指令提供了一维的数组或列表,那么matplotlib将默认它是一系列的y值,并自动为你生成x的值。默认的x向量从0开始并且具有和y同样的长度,因此x的数据是[0,1,2,3].
图片来自:绘图: matplotlib核心剖析
确定坐标范围
- plt.axis([xmin, xmax, ymin, ymax])
上面例子里的axis()命令给定了坐标范围。 - xlim(xmin, xmax)和ylim(ymin, ymax)来调整x,y坐标范围
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
%
matplotlib
inline
import
numpy
as
np
import
matplotlib
.
pyplot
as
plt
from
pylab
import *
x
=
np
.
arange
(
-
5.0
,
5.0
,
0.02
)
y1
=
np
.
sin
(
x
)
plt
.
figure
(
1
)
plt
.
subplot
(
211
)
plt
.
plot
(
x
,
y1
)
plt
.
subplot
(
212
)
#设置x轴范围
xlim
(
-
2.5
,
2.5
)
#设置y轴范围
ylim
(
-
1
,
1
)
plt
.
plot
(
x
,
y1
)
|
叠加图
用一条指令画多条不同格式的线。
1
2
3
4
5
6
7
8
9
|
import
numpy
as
np
import
matplotlib
.
pyplot
as
plt
# evenly sampled time at 200ms intervals
t
=
np
.
arange
(
0.
,
5.
,
0.2
)
# red dashes, blue squares and green triangles
plt
.
plot
(
t
,
t
,
'r--'
,
t
,
t*
*
2
,
'bs'
,
t
,
t*
*
3
,
'g^'
)
plt
.
show
(
)
|
plt.figure()
你可以多次使用figure命令来产生多个图,其中,图片号按顺序增加。这里,要注意一个概念当前图和当前坐标。所有绘图操作仅对当前图和当前坐标有效。通常,你并不需要考虑这些事,下面的这个例子为大家演示这一细节。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import
matplotlib
.
pyplot
as
plt
plt
.
figure
(
1
)
# 第一张图
plt
.
subplot
(
211
)
# 第一张图中的第一张子图
plt
.
plot
(
[
1
,
2
,
3
]
)
plt
.
subplot
(
212
)
# 第一张图中的第二张子图
plt
.
plot
(
[
4
,
5
,
6
]
)
plt
.
figure
(
2
)
# 第二张图
plt
.
plot
(
[
4
,
5
,
6
]
)
# 默认创建子图subplot(111)
plt
.
figure
(
1
)
# 切换到figure 1 ; 子图subplot(212)仍旧是当前图
plt
.
subplot
(
211
)
# 令子图subplot(211)成为figure1的当前图
plt
.
title
(
'Easy as 1,2,3'
)
# 添加subplot 211 的标题
|
figure感觉就是给图像ID,之后可以索引定位到它。
plt.text()添加文字说明
- text()可以在图中的任意位置添加文字,并支持LaTex语法
- xlable(), ylable()用于添加x轴和y轴标签
- title()用于添加图的题目
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import
numpy
as
np
import
matplotlib
.
pyplot
as
plt
mu
,
sigma
=
100
,
15
x
=
mu
+
sigma *
np
.
random
.
randn
(
10000
)
# 数据的直方图
n
,
bins
,
patches
=
plt
.
hist
(
x
,
50
,
normed
=
1
,
facecolor
=
'g'
,
alpha
=
0.75
)
plt
.
xlabel
(
'Smarts'
)
plt
.
ylabel
(
'Probability'
)
#添加标题
plt
.
title
(
'Histogram of IQ'
)
#添加文字
plt
.
text
(
60
,
.
025
,
r
'$mu=100, sigma=15$'
)
plt
.
axis
(
[
40
,
160
,
0
,
0.03
]
)
plt
.
grid
(
True
)
plt
.
show
(
)
|
text中前两个参数感觉应该是文本出现的坐标位置。
plt.annotate()文本注释
在数据可视化的过程中,图片中的文字经常被用来注释图中的一些特征。使用annotate()方法可以很方便地添加此类注释。在使用annotate时,要考虑两个点的坐标:被注释的地方xy(x, y)和插入文本的地方xytext(x, y)。1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import
numpy
as
np
import
matplotlib
.
pyplot
as
plt
ax
=
plt
.
subplot
(
111
)
t
=
np
.
arange
(
0.0
,
5.0
,
0.01
)
s
=
np
.
cos
(
2
*
np
.
pi*
t
)
line
,
=
plt
.
plot
(
t
,
s
,
lw
=
2
)
plt
.
annotate
(
'local max'
,
xy
=
(
2
,
1
)
,
xytext
=
(
3
,
1.5
)
,
arrowprops
=
dict
(
facecolor
=
'black'
,
shrink
=
0.05
)
,
)
plt
.
ylim
(
-
2
,
2
)
plt
.
show
(
)
|
plt.xticks()/plt.yticks()设置轴记号
现在是明白干嘛用的了,就是人为设置坐标轴的刻度显示的值。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
# 导入 matplotlib 的所有内容(nympy 可以用 np 这个名字来使用)
from
pylab
import *
# 创建一个 8 * 6 点(point)的图,并设置分辨率为 80
figure
(
figsize
=
(
8
,
6
)
,
dpi
=
80
)
# 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第 1 块(也是唯一的一块)
subplot
(
1
,
1
,
1
)
X
=
np
.
linspace
(
-
np
.
pi
,
np
.
pi
,
256
,
endpoint
=
True
)
C
,
S
=
np
.
cos
(
X
)
,
np
.
sin
(
X
)
# 绘制余弦曲线,使用蓝色的、连续的、宽度为 1 (像素)的线条
plot
(
X
,
C
,
color
=
"blue"
,
linewidth
=
1.0
,
linestyle
=
"-"
)
# 绘制正弦曲线,使用绿色的、连续的、宽度为 1 (像素)的线条
plot
(
X
,
S
,
color
=
"r"
,
lw
=
4.0
,
linestyle
=
"-"
)
plt
.
axis
(
[
-
4
,
4
,
-
1.2
,
1.2
]
)
# 设置轴记号
xticks
(
[
-
np
.
pi
,
-
np
.
pi
/
2
,
0
,
np
.
pi
/
2
,
np
.
pi
]
,
[
r
'$-pi$'
,
r
'$-pi/2$'
,
r
'$0$'
,
r
'$+pi/2$'
,
r
'$+pi$'
]
)
yticks
(
[
-
1
,
0
,
+
1
]
,
[
r
'$-1$'
,
r
'$0$'
,
r
'$+1$'
]
)
# 在屏幕上显示
show
(
)
|
当我们设置记号的时候,我们可以同时设置记号的标签。注意这里使用了 LaTeX。2
移动脊柱 坐标系
1
2
3
4
5
6
7
|
ax
=
gca
(
)
ax
.
spines
[
'right'
]
.
set_color
(
'none'
)
ax
.
spines
[
'top'
]
.
set_color
(
'none'
)
ax
.
xaxis
.
set_ticks_position
(
'bottom'
)
ax
.
spines
[
'bottom'
]
.
set_position
(
(
'data'
,
0
)
)
ax
.
yaxis
.
set_ticks_position
(
'left'
)
ax
.
spines
[
'left'
]
.
set_position
(
(
'data'
,
0
)
)
|
这个地方确实没看懂,囧,以后再说吧,感觉就是移动了坐标轴的位置。
plt.legend()添加图例
1
2
3
4
|
plot
(
X
,
C
,
color
=
"blue"
,
linewidth
=
2.5
,
linestyle
=
"-"
,
label
=
"cosine"
)
plot
(
X
,
S
,
color
=
"red"
,
linewidth
=
2.5
,
linestyle
=
"-"
,
label
=
"sine"
)
legend
(
loc
=
'upper left'
)
|
matplotlib.pyplot
使用plt.style.use('ggplot')
命令,可以作出ggplot风格的图片。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
# Import necessary packages
import
pandas
as
pd
%
matplotlib
inline
import
matplotlib
.
pyplot
as
plt
plt
.
style
.
use
(
'ggplot'
)
from
sklearn
import
datasets
from
sklearn
import
linear_model
import
numpy
as
np
# Load data
boston
=
datasets
.
load_boston
(
)
yb
=
boston
.
target
.
reshape
(
-
1
,
1
)
Xb
=
boston
[
'data'
]
[
:
,
5
]
.
reshape
(
-
1
,
1
)
# Plot data
plt
.
scatter
(
Xb
,
yb
)
plt
.
ylabel
(
'value of house /1000 ($)'
)
plt
.
xlabel
(
'number of rooms'
)
# Create linear regression object
regr
=
linear_model
.
LinearRegression
(
)
# Train the model using the training sets
regr
.
fit
(
Xb
,
yb
)
# Plot outputs
plt
.
scatter
(
Xb
,
yb
,
color
=
'black'
)
plt
.
plot
(
Xb
,
regr
.
predict
(
Xb
)
,
color
=
'blue'
,
linewidth
=
3
)
plt
.
show
(
)
|
给特殊点做注释
好吧,又是注释,多个例子参考一下!
我们希望在 2π/32π/3 的位置给两条函数曲线加上一个注释。首先,我们在对应的函数图像位置上画一个点;然后,向横轴引一条垂线,以虚线标记;最后,写上标签。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
t
=
2
*
np
.
pi
/
3
# 作一条垂直于x轴的线段,由数学知识可知,横坐标一致的两个点就在垂直于坐标轴的直线上了。这两个点是起始点。
plot
(
[
t
,
t
]
,
[
0
,
np
.
cos
(
t
)
]
,
color
=
'blue'
,
linewidth
=
2.5
,
linestyle
=
"--"
)
scatter
(
[
t
,
]
,
[
np
.
cos
(
t
)
,
]
,
50
,
color
=
'blue'
)
annotate
(
r
'$sin(frac{2pi}{3})=frac{sqrt{3}}{2}$'
,
xy
=
(
t
,
np
.
sin
(
t
)
)
,
xycoords
=
'data'
,
xytext
=
(
+
10
,
+
30
)
,
textcoords
=
'offset points'
,
fontsize
=
16
,
arrowprops
=
dict
(
arrowstyle
=
"->"
,
connectionstyle
=
"arc3,rad=.2"
)
)
plot
(
[
t
,
t
]
,
[
0
,
np
.
sin
(
t
)
]
,
color
=
'red'
,
linewidth
=
2.5
,
linestyle
=
"--"
)
scatter
(
[
t
,
]
,
[
np
.
sin
(
t
)
,
]
,
50
,
color
=
'red'
)
annotate
(
r
'$cos(frac{2pi}{3})=-frac{1}{2}$'
,
xy
=
(
t
,
np
.
cos
(
t
)
)
,
xycoords
=
'data'
,
xytext
=
(
-
90
,
-
50
)
,
textcoords
=
'offset points'
,
fontsize
=
16
,
arrowprops
=
dict
(
arrowstyle
=
"->"
,
connectionstyle
=
"arc3,rad=.2"
)
)
|
plt.subplot()
plt.subplot(2,3,1)
表示把图标分割成2*3的网格。也可以简写plt.subplot(231)
。其中,第一个参数是行数,第二个参数是列数,第三个参数表示图形的标号。
plt.axes()
我们先来看什么是Figure和Axes对象。在matplotlib中,整个图像为一个Figure对象。在Figure对象中可以包含一个,或者多个Axes对象。每个Axes对象都是一个拥有自己坐标系统的绘图区域。其逻辑关系如下34:
- axes() by itself creates a default full subplot(111) window axis.
- axes(rect, axisbg=’w’) where rect = [left, bottom, width, height] in normalized (0, 1) units. axisbg is the background color for the axis, default white.
- axes(h) where h is an axes instance makes h the current axis. An Axes instance is returned.
rect=[左, 下, 宽, 高] 规定的矩形区域,rect矩形简写,这里的数值都是以figure大小为比例,因此,若是要两个axes并排显示,那么axes[2]的左=axes[1].左+axes[1].宽,这样axes[2]才不会和axes[1]重叠。
show code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
http
:
//matplotlib.org/examples/pylab_examples/axes_demo.html
import
matplotlib
.
pyplot
as
plt
import
numpy
as
np
# create some data to use for the plot
dt
=
0.001
t
=
np
.
arange
(
0.0
,
10.0
,
dt
)
r
=
np
.
exp
(
-
t
[
:
1000
]
/
0.05
)
# impulse response
x
=
np
.
random
.
randn
(
len
(
t
)
)
s
=
np
.
convolve
(
x
,
r
)
[
:
len
(
x
)
]
*
dt
# colored noise
# the main axes is subplot(111) by default
plt
.
plot
(
t
,
s
)
plt
.
axis
(
[
0
,
1
,
1.1
*
np
.
amin
(
s
)
,
2
*
np
.
amax
(
s
)
]
)
plt
.
xlabel
(
'time (s)'
)
plt
.
ylabel
(
'current (nA)'
)
plt
.
title
(
'Gaussian colored noise'
)
# this is an inset axes over the main axes
a
=
plt
.
axes
(
[
.
65
,
.
6
,
.
2
,
.
2
]
,
axisbg
=
'y'
)
n
,
bins
,
patches
=
plt
.
hist
(
s
,
400
,
normed
=
1
)
plt
.
title
(
'Probability'
)
plt
.
xticks
(
[
]
)
plt
.
yticks
(
[
]
)
# this is another inset axes over the main axes
a
=
plt
.
axes
(
[
0.2
,
0.6
,
.
2
,
.
2
]
,
axisbg
=
'y'
)
plt
.
plot
(
t
[
:
len
(
r
)
]
,
r
)
plt
.
title
(
'Impulse response'
)
plt
.
xlim
(
0
,
0.2
)
plt
.
xticks
(
[
]
)
plt
.
yticks
(
[
]
)
plt
.
show
(
)
|
pyplot.pie参数
colors颜色
找出matpltlib.pyplot.plot中的colors可以取哪些值?
1
2
|
for
name
,
hex
in
matplotlib
.
colors
.
cnames
.
iteritems
(
)
:
print
name
,
hex
|
打印颜色值和对应的RGB值。
plt.axis('equal')
避免比例压缩为椭圆
autopct
1
|
autopct
enables
you
to
display
the
percent
value
using
Python
string
formatting
.
For
example
,
if
autopct
=
'%.2f'
,
then
for
each
pie
wedge
,
the
format
string
is
'%.2f'
and
the
numerical
percent
value
for
that
wedge
is
pct
,
so
the
wedge
label
is
set
to
the
string
'%.2f'
%
pct
.
|