原题
题目描述
给定一个整数序列A1A2A3….An。求它的一个递增子序列,使子序列的元素个数尽量多,元素不一定要求连续。
输入
第1行:1个整数n(1<=n<=5000),表示序列中元素的个数.
第2行-n+1行:每行1个整数x(-1000<=x<=1000),第i+1行表示序列中的第i个元素。
输出
第1行:1个整数k,表示最长上升子序列的长度。
第2行:k个用单个空格分开的整数,表示找到了最长上升子序列。如果有多个长度等于k的子序列,则输出最靠前的1个。
样例输入
8
1
3
2
4
3
5
4
6
样例输出
5
1 3 4 5 6
分析
首先我们先来看看什么是“最长上升子序列”。
“序列”,数字串,一些数字串在一起,一个集合;
“子序列”,这个序列是原数列的一部分;
“上升子序列”,这个序列的这些数满足“a[1]
#include<cstdio>
int h[5005][2];
int max(int a,int b) {return a>b?a:b;}
int main()
{
int n=1,i,j,s=0;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&h[i][0]);
h[i][1]=1;
}
for(i=1;i<=n;i++)
for(j=i-1;j>=1;j--)
if(h[j][0]<h[i][0])
h[i][1]=max(h[j][1]+1,h[i][1]);
for(i=1;i<=n;i++)
if(h[i][1]>=s)
s=h[i][1];
printf("%d",s);
}
但是不行,我们就要找另一种方法。
要怎么找呢?
这个序列需要满足“上升”吧?
那么,我们只需要把每一个上升序列都找出来再比较长短就OK了!
为了保证最长,我们要让每一串数的起始位置尽量往前,终止位置尽量往后,没错吧?
所以,我们只需枚举这n个数,以第i个数为这串数的终止位置,看谁串的串的数多,就可以了。
我们枚举到i号点的时候,看这个点是哪些队列的终止位置,再取最长的队列,让i号点成为这个队列的队尾,接替原来的队尾。
怎么优化呢?
我们不是让i号到队尾了吗?那么我们可不可以记录下他替代了谁呢?最后再逆序逆回来就可以啦!
以下就是代码实践。
源代码
#include<cstdio>
#include<algorithm>
using namespace std;
int n,a[6006],ans=-1,t,f[6006],c[6006];
void out(int syx){
if(c[syx]){
out(c[syx]);
printf(" ");
}
printf("%d",a[syx]);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
int e=0;
for(int j=1;j<i;j++)
if(a[j]<a[i]&&e<f[j])
e=f[j],c[i]=j;
f[i]=e+1;
if(ans<f[i])
ans=f[i],t=i;
}
printf("%d\n",ans);
out(t);
}
参考资料