求最长上升子序列的最大长度

问题描述

一个数的序列 bi,当 b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一

个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里 1 <= i1 < i2 < ... <

iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。

这些子序列中最长的长度是 4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入数据

输入的第一行是序列的长度 N (1 <= N <= 1000)。第二行给出序列中的 N个整数,这些

整数的取值范围都在 0到 10000。

输出要求

最长上升子序列的长度。

输入样例

7

1 7 3 5 9 4 8

输出样例

4

#include <stdio.h>
#include <string.h>
int arry[1001];
int len[1001];

int main()
{
    int i, j;
    int n, maxLen;
    scanf("%d", &n);
    for( i = 1; i <= n; i++ )
    {
       scanf("%d", &arry[i]);
    }
    len[1] = 1;
    for( i = 2; i <= n; i++ )
    {
       maxLen = 0;
       for( j = 1; j < i; j++ )
       {
          if( len[j] > maxLen && arry[j] < arry[i] )
          {
              /*
              *如果i位置的权值大于j位置的权值,
              *且j处得长度大于j以前的长度,i才能加入到j的后面
              */
             maxLen = len[j];
          }
       }
       len[i] = maxLen+1;
    }

    maxLen = 0;
    for( i = 1; i <= n; i++ )
    {
       if( len[i] > maxLen )  maxLen = len[i];
    }
    printf("%d\n", maxLen);
    return 0;
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值