BZOJ4403: 序列统计【组合】

题目描述:

给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。

题目分析:

序列是有序的,那么我们只关心每种元素有多少个。
[ L , R ] [L,R] [L,R]的每一个数看成一个盒子,元素看成球,那么就相当于把 n n n个相同的球放进 R − L + 1 R-L+1 RL+1个盒子里面,盒子可以为空,球可以不放完。
再加一个盒子,把没放的球放进这个盒子里面,原问题就等价于把 n n n个相同的球放进 R − L + 2 R-L+2 RL+2个盒子里,盒子可以为空的方案,经典隔板法,再减去 n n n个球都放到了空盒子的一种方案。
答案即为 C n + R − L + 1 R − L + 1 − 1 C_{n+R-L+1}^{R-L+1}-1 Cn+RL+1RL+11

或者解决这种不下降问题,可以把第 i i i个元素加 i i i转化成上升序列,选 i i i个数的话权值范围就是 [ L , R + i − 1 ] [L,R+i-1] [L,R+i1],即 C R − L + i i C_{R-L+i}^i CRL+ii,答案就是对它求和。

Code:

#include<cstdio>
#define maxn 1000005
const int mod = 1e6+3;
int T,n,L,R,fac[maxn],inv[maxn];
void Pre(const int N){
	fac[0]=fac[1]=inv[0]=inv[1]=1;
	for(int i=2;i<=N;i++) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
	for(int i=2;i<=N;i++) inv[i]=1ll*inv[i]*inv[i-1]%mod;
}
inline int C(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
inline int Lucas(int n,int m){
	int ret=1,s,t;
	while(n&&m){
		if((s=n%mod)<(t=m%mod)) return 0;
		ret=1ll*ret*C(s,t)%mod,n/=mod,m/=mod;
	}
	return ret;
}
int main()
{
	Pre(mod-1);
	scanf("%d",&T);
	while(T--){
		scanf("%d%d%d",&n,&L,&R);
		printf("%d\n",(Lucas(n+R-L+1,R-L+1)-1+mod)%mod);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值