【图论】 一笔画问题(欧拉路)

一笔画问题(euler-circuit.cpp)

题目描述
对给定的一个无向图,判断能否一笔画出。若能,输出一笔画的先后顺序,否则输出“No Solution!”
所谓一笔画出,即每条边仅走一次,每个顶点可以多次经过。
输出字典序最小的一笔画顺序。
输入
第1行:1个整数n,表示图的顶点数(n<=100)
接下来n行,每行n个数,表示图的邻接矩阵
输出
第1行:一笔画的先后顺序,每个顶点之间用一个空格分开
样例输入
样例一
3
0 1 1 
1 0 1 
1 1 0 
样例二:
7
0 1 0 1 1 0 1 
1 0 1 0 0 0 0 
0 1 0 1 0 0 0 
1 0 1 0 0 0 0 
1 0 0 0 0 1 0 
0 0 0 0 1 0 1 
1 0 0 0 0 1 0 
样例输出
样例一:
1 2 3 1
样例二:

1 2 3 4 1 5 6 7 1


分析:

	   本题是图论的基础题欧拉(回)路,即 所有边 走且仅走一次,因为题目已经给出矩阵,所以各个点的联系用邻接矩阵表示
        欧拉路可能成立的条件是图中只有2个奇点,而欧拉回路可能成立的条件是图中没有奇点,如果不满足这两个条件,则输出“No Solution!”

        奇偶点表示的是点的入度和出度的和,无向图中即该点连出的边的数量(注意自环)
      因为输出字典最小的,所以若是欧拉路,则从第一个奇点开始找,欧拉回路从1开始找
    PS:我的代码并没有判断该无向图是否连通,若读者需要请自行添加(多数题目保证图连通)


代码如下:

#include<cstdio>
int n,s,star,num,cnt[105],ans[10005];
bool e[105][105];
void dfs(int u)
{
	for(int v=1;v<=n;v++)
		if(e[u][v])
		{
			e[u][v]=e[v][u]=0;
			dfs(v);
		}
	ans[++num]=u;
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			scanf("%d",&e[i][j]);
			if(e[i][j]&&i>=j) cnt[i]++,cnt[j]++;
		}
	for(int i=1;i<=n;i++)
		if(cnt[i]%2){
			s++;
			if(!star) star=i;
		}
	if(s!=0&&s!=2) {puts("No Solution!");return 0;}
	if(!s) star=1;
	dfs(star);
	for(int i=num;i>=1;i--) printf("%d ",ans[i]);
}




### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值