BZOJ3237: [Ahoi2013]连通图【分治+回退并查集(类似于线段树分治)】

题目描述:

在这里插入图片描述
在这里插入图片描述
数据范围不是题面中的,是这个:N<=100000 M<=200000 K<=100000

题目分析:

查询连通性可以用并查集的size,如果siz[find(1)]==总点数则图连通,反之不连通。

然而并查集并不支持删边,但是它支持加边以及按加边顺序回退,这就让我们想到了线段树形状的可回退结构:分治。

c d q ( l , r ) cdq(l,r) cdq(l,r)表示解决区间 [ l , r ] [l,r] [l,r]的询问,此时所有不在 [ l , r ] [l,r] [l,r]的删边集合内的边都已经加好了。(这里的cdq与cdq分治没有什么关系,只是个函数名,吧。。)

我们将所有不在 [ l , m i d ] [l,mid] [l,mid]的删边集合内,但在 [ m i d + 1 , r ] [mid+1,r] [mid+1,r]的删边集合中的边加入并查集,然后递归 c d q ( l , m i d ) cdq(l,mid) cdq(l,mid)

将边恢复,然后将将所有不在 [ m i d + 1 , r ] [mid+1,r] [mid+1,r]的删边集合内,但在 [ l , m i d ] [l,mid] [l,mid]的删边集合中的边加入并查集,然后递归 c d q ( m i d + 1 , r ) cdq(mid+1,r) cdq(mid+1,r)

将边恢复,结束。

l = = r l==r l==r时就判断当前图是否连通,就是该询问的答案。

一条边只会被加入删除log次,总复杂度是 O ( k c l o g n l o g k ) O(kclognlogk) O(kclognlogk)
这里体现了分治的两大优点:可回退一层,整合信息、整体利用。
它还有一个特点是可以根据mid来划分操作,从而维护有序性贡献,这一点在cdq分治中有明显体现(比如偏序问题)

Code:

#include<cstdio>
#include<cctype>
#include<vector>
#define maxn 100005
#define maxm 200005
using namespace std;
char cb[1<<18],*cs,*ct;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<18,stdin),cs==ct)?0:*cs++)
inline void read(int &a){
    char c;while(!isdigit(c=getc()));
    for(a=c-'0';isdigit(c=getc());a=a*10+c-'0');
}
int n,m,k,fa[maxn],siz[maxn],q[maxn<<1],top,vis[maxm],u[maxm],v[maxm];
bool ans[maxn];
vector<int>e[maxn];
int find(int x){while(fa[x]) x=fa[x];return x;}
void Union(int x,int y){
    if((x=find(x))==(y=find(y))) return;
    if(siz[x]<siz[y]) swap(x,y);
    fa[y]=x,siz[x]+=siz[y];
    q[++top]=x,q[++top]=y;
}
void Cancel(int cur){
    for(;top>cur;top-=2) siz[q[top-1]]-=siz[q[top]],fa[q[top]]=0;
}
void solve(int l,int r){
    if(l==r) {ans[l]=(siz[find(1)]==n);return;}
    int mid=(l+r)>>1,cur=top;
    for(int i=mid+1;i<=r;i++)
        for(int j=e[i].size()-1;j>=0;j--)
            if(!--vis[e[i][j]]) Union(u[e[i][j]],v[e[i][j]]);
    solve(l,mid),Cancel(cur);
    for(int i=mid+1;i<=r;i++) for(int j=e[i].size()-1;j>=0;j--) vis[e[i][j]]++;
    for(int i=l;i<=mid;i++)
        for(int j=e[i].size()-1;j>=0;j--)
            if(!--vis[e[i][j]]) Union(u[e[i][j]],v[e[i][j]]);
    solve(mid+1,r),Cancel(cur);
    for(int i=l;i<=mid;i++) for(int j=e[i].size()-1;j>=0;j--) vis[e[i][j]]++;
}
int main()
{
    #ifndef ONLINE_JUDGE
        freopen("1.in","r",stdin);
    #endif
    read(n),read(m);
    for(int i=1;i<=m;i++) read(u[i]),read(v[i]);
    read(k);
    for(int i=1,s,x;i<=k;i++) {read(s);while(s--) read(x),e[i].push_back(x),vis[x]++;}
    for(int i=1;i<=n;i++) siz[i]=1;
    for(int i=1;i<=m;i++) if(!vis[i]) Union(u[i],v[i]);
    solve(1,k);
    for(int i=1;i<=k;i++) puts(ans[i]?"Connected":"Disconnected");
}

针对连通性还有一个做法。
把图分为树边和非树边,如果整棵树在 E E E处断开,一定是链接左右两个连通块的非树边和 E E E均被删除。
基于这个想法给边赋值,要用到随机化和线性基(判有没有异或和为0的子集),具体做法参见Ark的blog,写的很详细。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值