洛谷SP34096 DIVCNTK【Min_25筛】

题目描述:

σ0(i)\sigma_0(i)ii的约数个数,给出n,k1010n,k\le10^{10},求:
i=1nσ0(ik)   mod  264\sum_{i=1}^n\sigma_0(i^k)~~~\mod 2^{64}

题目分析:

洛谷的题解
f(p)=k+1,f(pi)=ik+1f(p)=k+1,f(p^i)=ik+1,直接Min_25筛即可。

Code:

#include<bits/stdc++.h>
#define maxn 200005
using namespace std;
typedef unsigned long long ULL;
int T,m,sn,cnt;
ULL n,K,s[maxn],p[maxn],a[maxn];
inline int ID(ULL x){return x<=sn?x:m-n/x+1;}
ULL S(ULL n,int k){
	if(n<=1||p[k]>n) return 0;
	ULL ret=(s[ID(n)]-(k-1))*(K+1);
	for(int i=k;i<=cnt&&p[i]*p[i]<=n;i++)
		for(ULL j=1,pw=p[i];pw*p[i]<=n;j++,pw*=p[i])
			ret+=(j*K+1)*S(n/pw,i+1)+(j+1)*K+1;
	return ret;
}
int main()
{
	scanf("%d",&T);
	while(T--){
		scanf("%llu%llu",&n,&K),sn=sqrt(n),cnt=m=0;
		for(ULL i=1;i<=n;i++) a[++m]=i=n/(n/i),s[m]=i-1;
		for(int i=2;i<=sn;i++) if(s[i]^s[i-1]){
			p[++cnt]=i;
			for(int j=m;a[j]>=1ll*i*i;j--) s[j]-=s[ID(a[j]/i)]-s[i-1];
		}
		printf("%llu\n",S(n,1)+1);
	}
}
发布了363 篇原创文章 · 获赞 129 · 访问量 5万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览