斯坦纳树题集

[WC2008]游览计划

网格图,点权,连通一些指定点的最小代价【输出方案】。

Code:

#include<bits/stdc++.h>
#define maxn 12
#define maxs (1<<10)
using namespace std;
const int inf = 0x3f3f3f3f;
int T,n,m,k,a[maxn][maxn],f[maxn][maxn][maxs];
struct node{int x,y,s;}pre[maxn][maxn][maxs];
struct Point{int x,y;};
queue<Point>q; bool inq[maxn][maxn];
int dx[4]={1,-1,0,0},dy[4]={0,0,1,-1};
bool vis[maxn][maxn];
void dfs(int i,int j,int s){
	vis[i][j]=1; node tmp=pre[i][j][s];
	if(!tmp.s) return;
	dfs(tmp.x,tmp.y,tmp.s);
	if(s!=tmp.s) dfs(tmp.x,tmp.y,s^tmp.s);
}
int main()
{
	int x,y;
	scanf("%d%d",&n,&m);
	memset(f,0x3f,sizeof f);
	for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]),!a[i][j]&&(f[i][j][1<<(k++)]=0);
	for(int s=1;s<1<<k;s++){
		for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++){
				for(int t=(s-1)&s;t;t=(t-1)&s)
					if(f[i][j][t]+f[i][j][s^t]-a[i][j]<f[i][j][s])
						f[i][j][s]=f[i][j][t]+f[i][j][s^t]-a[i][j],pre[i][j][s]=(node){i,j,t};
				if(f[i][j][s]<inf) inq[i][j]=1,q.push((Point){i,j});
			}
		while(!q.empty()){
			int u=q.front().x,v=q.front().y; q.pop(),inq[u][v]=0;
			for(int i=0;i<4;i++)
				if((x=u+dx[i])>=1&&x<=n&&(y=v+dy[i])>=1&&y<=m&&f[x][y][s]>f[u][v][s]+a[x][y]){
					f[x][y][s]=f[u][v][s]+a[x][y],pre[x][y][s]=(node){u,v,s};
					if(!inq[x][y]) inq[x][y]=1,q.push((Point){x,y});
				}
		}
	}
	for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(!a[i][j]) {x=i,y=j;goto end;}
end:
	printf("%d\n",f[x][y][(1<<k)-1]);
	dfs(x,y,(1<<k)-1);
	for(int i=1;i<=n;i++,puts("")) for(int j=1;j<=m;j++) putchar(vis[i][j]?a[i][j]?'o':'x':'_');
}

HDU4085 Peach Blossom Spring

无向带边权图,将 [ 1 , k ] [1,k] [1,k] [ n − k + 1 , n ] [n-k+1,n] [nk+1,n]配对连通的最小总代价。【斯坦纳森林,枚举子集合并答案,注意合并的状态必须是合法状态】。

Code:

#include<bits/stdc++.h>
#define maxn 52
#define maxm 2005
using namespace std;
const int inf = 0x3f3f3f3f;
int T,n,m,k,f[maxn][1<<10],g[1<<10],bin[1<<10];
int fir[maxn],nxt[maxm],to[maxm],w[maxm],tot;
inline void line(int x,int y,int z){nxt[++tot]=fir[x],fir[x]=tot,to[tot]=y,w[tot]=z;}
queue<int>q; bool inq[maxn];
int main()
{
	for(int i=1;i<1<<10;i++) bin[i]=bin[i>>1]+(i&1);
	scanf("%d",&T);
	while(T--){
		scanf("%d%d%d",&n,&m,&k); int x,y,z;
		memset(fir,0,(n+1)<<2),tot=0;
		for(int i=1;i<=m;i++) scanf("%d%d%d",&x,&y,&z),line(x,y,z),line(y,x,z);
		for(int i=1;i<=n;i++) for(int s=0;s<1<<2*k;s++) f[i][s]=inf;
		for(int i=1;i<=k;i++) f[i][1<<(i-1)]=0,f[n-i+1][1<<(2*k-i)]=0;
		for(int s=1;s<1<<2*k;s++){
			for(int i=1;i<=n;i++){
				for(int t=(s-1)&s;t;t=(t-1)&s)
					f[i][s]=min(f[i][s],f[i][t]+f[i][s^t]);
				if(f[i][s]<inf) inq[i]=1,q.push(i);
			}
			while(!q.empty()){
				int u=q.front(); q.pop(),inq[u]=0;
				for(int i=fir[u],v;i;i=nxt[i]) if(f[v=to[i]][s]>f[u][s]+w[i]){
					f[v][s]=f[u][s]+w[i]; if(!inq[v]) inq[v]=1,q.push(v);
				}
			}
		}
		memset(g,0x3f,(1<<2*k)<<2);
		for(int s=1;s<1<<2*k;s++) if(bin[s&((1<<k)-1)]==bin[s>>k]){
			for(int i=1;i<=n;i++) g[s]=min(g[s],f[i][s]);
			for(int t=(s-1)&s;t;t=(t-1)&s) g[s]=min(g[s],g[t]+g[s^t]);
		}
		if(g[(1<<2*k)-1]<inf) printf("%d\n",g[(1<<2*k)-1]);
		else puts("No solution");
	}
}

ZOJ3613 Wormhole Transport

无向带边权图,点上可能有一个资源点/多个工厂,将资源点与工厂配对,求最大配对数及最小代价。【同一个点上的工厂可以合在一个连通状态上,合并答案时的状态要求工厂数大于等于资源点数】。

Code:

#include<bits/stdc++.h>
#define maxn 205
#define maxm 10005
using namespace std;
const int inf = 0x3f3f3f3f;
int T,n,m,k,S[maxn],X[maxn],cx,cy,f[maxn][1<<8],g[1<<8],bin[1<<8];
int fir[maxn],nxt[maxm],to[maxm],w[maxm],tot;
inline void line(int x,int y,int z){nxt[++tot]=fir[x],fir[x]=tot,to[tot]=y,w[tot]=z;}
queue<int>q; bool inq[maxn];
inline bool check(int s){
	int ret=0;
	for(int i=0;i<cx;i++) if(s>>i&1) ret+=X[i];
	for(int i=cx;i<cx+cy;i++) if(s>>i&1) ret--;
	return ret>=0;
}
int main()
{
	for(int i=1;i<1<<8;i++) bin[i]=bin[i>>1]+(i&1);
	int x,y,z,sum;
	while(~scanf("%d",&n)){
		memset(fir,0,(n+1)<<2),tot=0,cx=cy=sum=0;
		memset(f,0x3f,sizeof f);
		for(int i=1;i<=n;i++){
			scanf("%d%d",&x,&S[i]);
			if(x&&S[i]) sum++,x--,S[i]=0;
			if(x) f[i][1<<cx]=0,X[cx++]=x; 
		}
		for(int i=1;i<=n;i++) if(S[i]) f[i][1<<(cx+cy)]=0,cy++;
		scanf("%d",&m);
		for(int i=1;i<=m;i++) scanf("%d%d%d",&x,&y,&z),line(x,y,z),line(y,x,z);
		for(int s=1;s<1<<(cx+cy);s++){
			for(int i=1;i<=n;i++){
				for(int t=(s-1)&s;t;t=(t-1)&s)
					f[i][s]=min(f[i][s],f[i][t]+f[i][s^t]);
				if(f[i][s]<inf) inq[i]=1,q.push(i);
			}
			while(!q.empty()){
				int u=q.front(); q.pop(),inq[u]=0;
				for(int i=fir[u],v;i;i=nxt[i]) if(f[v=to[i]][s]>f[u][s]+w[i]){
					f[v][s]=f[u][s]+w[i]; if(!inq[v]) inq[v]=1,q.push(v);
				}
			}
		}
		memset(g,0x3f,sizeof g);
		int ans=0,cnt=0;
		for(int s=1;s<1<<(cx+cy);s++) if(check(s)){
			for(int i=1;i<=n;i++) g[s]=min(g[s],f[i][s]);
			for(int t=(s-1)&s;t;t=(t-1)&s) g[s]=min(g[s],g[t]+g[s^t]);
			int num=bin[s>>cx];
			if(num>cnt) ans=g[s],cnt=num;
			else if(num==cnt) ans=min(ans,g[s]);
		}
		printf("%d %d\n",cnt+sum,ans);
	}
}

模拟赛20200302 LYK loves graph

至少连通k种关键点。【随机映射】https://blog.csdn.net/C20181220_xiang_m_y/article/details/104615822

HDU3311 Dig The Wells

【打井问题】n+m个点每个点打井有个费用,连边有费用,问让前n个点都与井相连的最小费用。

新建一个虚点0,每个点向它连边,费用为打井的费用,问题转化为求让0和前n个点连通的最小费用。

Code:

#include<bits/stdc++.h>
#define maxn 1015
#define maxm 11015
using namespace std;
const int inf = 0x3f3f3f3f;
int n,m,E,f[maxn][1<<5];
int fir[maxn],nxt[maxm],to[maxm],w[maxm],tot;
void line(int x,int y,int z){nxt[++tot]=fir[x],fir[x]=tot,to[tot]=y,w[tot]=z;}
queue<int>q; bool inq[maxn];
int main()
{
    for(int x,y,z;~scanf("%d%d%d",&n,&m,&E);){
        memset(fir,0,(n+m+1)<<2),tot=0;
        for(int i=1;i<=n;i++) scanf("%d",&x),line(i,0,x);
        for(int i=1;i<=m;i++) scanf("%d",&x),line(n+i,0,x);
        for(int i=1;i<=E;i++) scanf("%d%d%d",&x,&y,&z),line(x,y,z),line(y,x,z);
        memset(f,0x3f,(n+m+1)*(1<<5)<<2);
        for(int i=1;i<=n;i++) f[i][1<<(i-1)]=0;
        for(int s=1;s<1<<n;s++){
            for(int i=0;i<=n+m;i++){
                for(int t=s-1;t;t=(t-1)&s) f[i][s]=min(f[i][s],f[i][t]+f[i][s^t]);
                if(f[i][s]<inf) q.push(i),inq[i]=1;
            }
            while(!q.empty()){
                int u=q.front(); q.pop(),inq[u]=0;
                for(int i=fir[u],v;i;i=nxt[i]) if(f[v=to[i]][s]>f[u][s]+w[i]){
                    f[v][s]=f[u][s]+w[i]; if(!inq[v]) inq[v]=1,q.push(v);
                }
            }
        }
        printf("%d\n",f[0][(1<<n)-1]);
    }
}

LOJ#2977. 「THUSCH 2017」巧克力

网格图,每个点有颜色和权值,求含有至少 k ≤ 5 k\le5 k5种颜色的连通块的最少点数,在此前提下求连通块权值中位数的最小值。【随机映射】【二分求最小中位数】

随机映射到 k k k种颜色,某种最优解恰好被映射到不同的 k k k种颜色的概率是 k ! k k = 0.0384 \frac {k!}{k^k}=0.0384 kkk!=0.0384,随机两百次还不成功的概率是 3.970 e − 4 3.970e-4 3.970e4

先求出连通块的最少点数,记为 c n t cnt cnt
然后二分一个数 m i d mid mid,检验是否可以在最少点数的条件下尽可能多的选择小于等于 m i d mid mid的数,使其达到 c n t + 1 2 \frac {cnt+1}2 2cnt+1
令每个数的权值为 a [ i ] = B + ( a [ i ] ≤ m i d   ? − 1 : 1 ) a[i]=B+(a[i]\le mid~?-1:1) a[i]=B+(a[i]mid ?1:1)。( B B B是一个大于 c n t cnt cnt的数,可以自己设定,只要后面的值的和达不到 B B B
如果这样算出连通 k k k种颜色的最小权值小于等于 c n t ∗ B cnt*B cntB,说明当前的中位数还可以更小,令 r = m i d r=mid r=mid,否则令 l = m i d + 1 l=mid+1 l=mid+1
原理就是给第一条件设一个大权值,第二条件设一个小权值,求最小就会在优先第一条件的情况下尽可能使第二条件最小。

Code:

#include<bits/stdc++.h>
#define maxn 235
#define maxk 5
using namespace std;
const int inf = 0x3f3f3f3f;
int n,m,k,N,f[maxn][1<<maxk],a[maxn],A[maxn],b[maxn],c[maxn],id[maxn],len,ansP,ansV;
int dx[4]={1,-1,0,0},dy[4]={0,0,1,-1};
typedef pair<int,int> pii;
priority_queue<pii,vector<pii>,greater<pii> >q;
const int B = 1000;
int Steiner(int mid){
	memset(f,0x3f,N*(1<<maxk)<<2);
	for(int i=0;i<N;i++) if(~c[i]) f[i][1<<id[c[i]]]=A[i]=B+(a[i]<=mid?-1:1);
	for(int s=1;s<1<<k;s++){
		for(int i=0;i<N;i++){
			for(int t=s-1;t;t=(t-1)&s) f[i][s]=min(f[i][s],f[i][t]+f[i][s^t]-A[i]);
			if(f[i][s]<inf) q.push(pii(f[i][s],i));
		}
		while(!q.empty()){
			int u=q.top().second,d=q.top().first,i=u/m,j=u%m; q.pop();
			if(f[u][s]!=d) continue;
			for(int k=0,x,y,v;k<4;k++) 
				if((x=i+dx[k])>=0&&x<n&&(y=j+dy[k])>=0&&y<m&&~c[v=x*m+y]&&f[v][s]>f[u][s]+A[v])
					q.push(pii(f[v][s]=f[u][s]+A[v],v));
		}
	}
	int ret=inf;
	for(int i=0;i<N;i++) ret=min(ret,f[i][(1<<k)-1]);
	return ret;
}
void solve(){
	for(int i=1;i<=N;i++) id[i]=rand()%k;
	int cnt=Steiner(-1);
	if(cnt>=inf||ansP<(cnt/=B)) return;
	if(ansP>cnt) ansP=cnt,ansV=inf;
	int l=0,r=min(len-1,ansV-1),mid;
	if(Steiner(b[r])>cnt*B) return;
	while(l<r) mid=(l+r)>>1,Steiner(b[mid])<=cnt*B?(r=mid):(l=mid+1);
	ansV=l;
}
int main()
{
	srand(time(0));
	int T; scanf("%d",&T);
	while(T--){
		scanf("%d%d%d",&n,&m,&k),N=n*m,len=0;
		for(int i=0;i<N;i++) scanf("%d",&c[i]);
		for(int i=0;i<N;i++) scanf("%d",&a[i]),~c[i]&&(b[len++]=a[i]);
		sort(b,b+len),len=unique(b,b+len)-b-1;
		int S = 150; ansP=inf,ansV=0;
		while(S--) solve();
		if(ansP<inf) printf("%d %d\n",ansP,b[ansV]);
		else puts("-1 -1");
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Python实现最小斯坦的代码可以使用Prim算法来解决。具体实现如下: ```python import sys # 为了方便表示图的邻接矩阵,使用无穷大代表不可达 inf = sys.maxsize def prim(graph): num_vertices = len(graph) key = [inf] * num_vertices # 记录顶点到最小生成的最小权值边 parent = [None] * num_vertices # 记录最小生成中顶点的父节点 visited = [False] * num_vertices # 记录顶点是否已访问 # 将第一个顶点设为起始顶点 key[0] = 0 for _ in range(num_vertices): # 找到未访问的顶点中键值最小的顶点 min_key = inf min_vertex = None for v in range(num_vertices): if not visited[v] and key[v] < min_key: min_key = key[v] min_vertex = v # 将找到的顶点标记为已访问 visited[min_vertex] = True # 更新顶点的最小权值边和父节点 for v in range(num_vertices): if not visited[v] and graph[min_vertex][v] < key[v]: key[v] = graph[min_vertex][v] parent[v] = min_vertex return parent def min_steiner_tree(graph, terminals): num_terminals = len(terminals) # 构建终端间的最短路径图 shortest_paths = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): shortest_paths[i][j] = dijkstra(graph, terminals[i], terminals[j]) # 在最短路径图上生成最小斯坦 steiner_tree = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): if i == j: steiner_tree[i][j] = 0 else: for k in range(num_terminals): steiner_tree[i][j] = min(steiner_tree[i][j], shortest_paths[i][k] + shortest_paths[k][j]) # 使用Prim算法生成最小生成 parent = prim(steiner_tree) return parent # 测试代码 graph = [[0, 7, 9, inf, inf, 14], [7, 0, 10, 15, inf, inf], [9, 10, 0, 11, inf, 2], [inf, 15, 11, 0, 6, inf], [inf, inf, inf, 6, 0, 9], [14, inf, 2, inf, 9, 0]] terminals = [0, 2, 4] parent = min_steiner_tree(graph, terminals) print(parent) ``` 此代码是使用Prim算法在最短路径图上生成最小斯坦。输入的图是一个邻接矩阵,其中inf表示顶点之间不可达。terminals是终端节点的列表。输出是一个列表,表示每个顶点在生成的最小斯坦中的父节点。 ### 回答2: Python实现最小斯坦的代码可以使用图的最小生成算法和动态规划的思想。 首先,我们可以使用Prim算法或Kruskal算法找到图的最小生成,即连接所有顶点的最小权重的子图。 接下来,对于每一条边,我们通过遍历所有顶点集合的子集来找到最小斯坦。子集的大小从1开始递增,直到包含所有顶点为止。 对于每个子集,我们通过动态规划的方法来找到连接子集中所有顶点的最小权重的边。 具体的实现步骤如下: 1. 使用Prim算法或Kruskal算法找到图的最小生成,并保存最小生成的边集合。 2. 对于每条边e in 最小生成的边集合: 2.1 对于每个顶点集合V'(从1个元素开始递增到总顶点数): 2.1.1 如果V'包含边e的两个顶点,则忽略该顶点集合。 2.1.2 否则,遍历V'的所有子集V'': 2.1.2.1 如果V''中不包含边e的两个顶点,则忽略该子集。 2.1.2.2 否则,计算通过V''中的顶点连接边e的权重和,并更新最小权重值和对应的边。 3. 最后得到的最小权重值和对应的边即为最小斯坦的结果。 以下是一个简单的Python代码示例: ```python import math def minimum_steiner_tree(graph): n = len(graph) inf = float('inf') dp = [[inf] * n for _ in range(1 << n)] for v in range(n): dp[1 << v][v] = 0 for S in range(1 << n): for v in range(n): for u in range(n): dp[S | (1 << u)][u] = min(dp[S | (1 << u)][u], dp[S][v] + graph[v][u]) return min(dp[-1]) # 测试代码 graph = [[0, 2, 3, math.inf], [2, 0, 1, 3], [3, 1, 0, 2], [math.inf, 3, 2, 0]] result = minimum_steiner_tree(graph) print("最小斯坦的权重为:", result) ``` 权重矩阵graph表示的是无向图的邻接矩阵,math.inf表示无穷大,表示两个顶点之间没有边。代码中的结果为最小斯坦的权重。 ### 回答3: Python最小斯坦的代码可以通过使用Dijkstra算法和回溯法来实现。以下是一个可能的实现: ```python import sys def dijkstra(graph, src): n = len(graph) dist = [sys.maxsize] * n dist[src] = 0 visited = [False] * n for _ in range(n): u = min_distance(dist, visited) visited[u] = True for v in range(n): if graph[u][v] > 0 and not visited[v] and dist[v] > dist[u] + graph[u][v]: dist[v] = dist[u] + graph[u][v] return dist def min_distance(dist, visited): min_dist = sys.maxsize min_index = -1 for v in range(len(dist)): if not visited[v] and dist[v] < min_dist: min_dist = dist[v] min_index = v return min_index def tsp_solver(graph, start): n = len(graph) tsp_path = None tsp_cost = sys.maxsize def tsp_recursion(curr_node, visited, current_path, current_cost): nonlocal tsp_path, tsp_cost if len(visited) == n: if graph[curr_node][start] > 0: current_cost += graph[curr_node][start] current_path.append(start) if current_cost < tsp_cost: tsp_cost = current_cost tsp_path = current_path.copy() current_path.pop() current_cost -= graph[curr_node][start] return for next_node in range(n): if next_node not in visited: new_path = current_path.copy() new_path.append(next_node) tsp_recursion(next_node, visited + [next_node], new_path, current_cost + graph[curr_node][next_node]) tsp_recursion(start, [start], [start], 0) return tsp_path, tsp_cost def min_steiner_tree(graph, terminals): n = len(graph) t = len(terminals) dp = [[sys.maxsize] * t for _ in range(1 << t)] # 动态规划表格 path = [[None] * t for _ in range(1 << t)] # 记录路径 for i in range(t): dist = dijkstra(graph, terminals[i]) for j in range(t): dp[1 << i][j] = dist[terminals[j]] for i in range(1 << t): for j in range(t): if dp[i][j] == sys.maxsize: continue for k in range(t): if (i >> k) & 1 == 0 and dp[i][j] + dp[1 << k | i][k] < dp[1 << k | i][k]: dp[1 << k | i][k] = dp[i][j] + dp[1 << k | i][k] path[1 << k | i][k] = j min_cost = sys.maxsize min_path = None for i in range(t): if dp[(1 << t) - 1][i] < min_cost: min_cost = dp[(1 << t) - 1][i] min_path = [i] while len(min_path) < t: last_node = min_path[-1] min_path.append(path[(1 << t) - 1][last_node]) min_path = [terminals[i] for i in min_path] tsp_path, tsp_cost = tsp_solver(graph, terminals[0]) min_cost += tsp_cost min_path += tsp_path[1:] return min_path, min_cost # 测试例子 graph = [ [0, 2, 3, 0, 0], [2, 0, 0, 4, 0], [3, 0, 0, 1, 3], [0, 4, 1, 0, 2], [0, 0, 3, 2, 0] ] terminals = [1, 2, 3] path, cost = min_steiner_tree(graph, terminals) print("最小斯坦路径:", path) print("最小斯坦总成本:", cost) ``` 这段代码通过调用`min_steiner_tree`函数来计算给定图和终端点集合的最小斯坦的路径和成本。`graph`代表图的邻接矩阵,`terminals`代表终端点的列表。最后将得到的最小斯坦路径和成本打印出来。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值