LOJ#6511. 「雅礼集训 2018 Day8」B【线性规划对偶问题,费用流】

题目描述:

在这里插入图片描述

题目分析:

在这里插入图片描述
求最大费用可行流即可。路径的长度指路径上的 t i t_i ti之和。

对偶理论:
变量非负,约束不等式同号,下面这张图截自百度百科对偶理论
在这里插入图片描述
LOJ上有不二分的做法,8是太懂。。虽然上面这个做法也很玄学 (Upd,后文补充了)

Upd:更好的理解体验请阅读 2016国家集训队论文《浅谈线性规划与对偶问题》

Code:

#include<bits/stdc++.h>
#define maxn 125
#define maxm 1505
using namespace std;
const int inf = 0x3f3f3f3f;
int n,m,W,S,T;
int fir[maxn],nxt[maxm],to[maxm],c[maxm],w[maxm],tot=1;
void line(int x,int y,int z,int v){
	nxt[++tot]=fir[x],fir[x]=tot,to[tot]=y,c[tot]=z,w[tot]=v;
	nxt[++tot]=fir[y],fir[y]=tot,to[tot]=x,c[tot]=0,w[tot]=-v;
}
int X[405],Y[405],sum,t[maxn],C[maxn];
int dis[maxn],pp[maxn],pe[maxn];
queue<int>q; bool inq[maxn];
bool SPFA(){
	memset(dis,0x3f,(T+1)<<2); q.push(T),dis[T]=0;
	while(!q.empty()){
		int u=q.front(); q.pop(),inq[u]=0;
		for(int i=fir[u],v;i;i=nxt[i]) if(c[i^1]&&dis[v=to[i]]>dis[u]+w[i^1]){
			dis[v]=dis[u]+w[i^1],pp[v]=u,pe[v]=i^1;
			if(!inq[v]) inq[v]=1,q.push(v);
		}
	}
	return dis[S]<0;
}
bool check(int mid){
	memset(fir,0,(T+1)<<2),tot=1;
	for(int i=1;i<=n;i++)
		line(S,i,inf,mid),
		line(i,i+n,C[i],-t[i]),
		line(i,i+n,inf,0),
		line(i+n,T,inf,0);
	for(int i=1;i<=m;i++) line(X[i]+n,Y[i],inf,0);
	int ans=0;
	while(SPFA()){
		int mn=inf;
		for(int x=S;x!=T;x=pp[x]) mn=min(mn,c[pe[x]]);
		ans+=mn*dis[S];
		for(int x=S;x!=T;x=pp[x]) c[pe[x]]-=mn,c[pe[x]^1]+=mn;
	}
	return -ans<=W;
}
int main()
{
	scanf("%d%d%d",&n,&m,&W);
	for(int i=1;i<=n;i++) scanf("%d",&t[i]),sum+=t[i];
	for(int i=1;i<=n;i++) scanf("%d",&C[i]);
	for(int i=1;i<=m;i++) scanf("%d%d",&X[i],&Y[i]);
	S=0,T=2*n+1;
	int l=0,r=sum,mid;
	while(l<r) check(mid=(l+r)>>1)?(r=mid):(l=mid+1);
	printf("%d\n",l);
}

Upd:LP对偶费用流解法

听完dls的LP对偶费用流归来啦!(虽然还有点迷糊)

线性规划
minimize ∑ c ( u , v ) max ⁡ ( h u − h v + w ( u , v ) , 0 ) \text{minimize} \sum c(u,v)\max(h_u-h_v+w(u,v),0) minimizec(u,v)max(huhv+w(u,v),0)
可以转化为最大费用循环流, u u u v v v 连流量为 c ( u , v ) c(u,v) c(u,v),费用为 w ( u , v ) w(u,v) w(u,v) 的边,其中 h h h 为自己定义的 ≥ 0 \ge 0 0 的变量。
具体证明可以根据最大费用循环流的线性规划模型对偶回去,网上也有。

我们把 u u u 点安装完成的时间设为 T u T_u Tu,减少时间设为 δ u \delta_u δu,那么限制条件就是 T v ≥ T u + t v − δ v T_v\ge T_u+t_v-\delta_v TvTu+tvδv

二分答案之后我们想要最小化 ∑ δ v ∗ c v \sum \delta_v*c_v δvcv,但是 δ v \delta_v δv 的限制条件有多个,无法取等,把点拆成两个: x u x_u xu y u y_u yu,分别表示前面所有安装包安装完成的时间,和 u u u 安装完成的时间。

最开始的问题可以表述为:
minimize  y e n d s.t.      y v − x v − t v + δ v ≥ 0 y u ≤ x v δ v ≤ t v ∑ δ v ∗ c v ≤ w \text{minimize} ~y_{end}\\ \text{s.t.}~~~~~y_v-x_v-t_v+\delta_v\ge 0\\ y_u\le x_v\\ \delta_v\le t_v\\ \sum \delta_v*c_v\le w minimize yends.t.     yvxvtv+δv0yuxvδvtvδvcvw

二分答案 λ \lambda λ,问题转化为:
minimize ∑ δ v ∗ c v s.t.      y v − x v − t v + δ v ≥ 0 y u ≤ x v δ v ≤ t v y v ≤ λ \text{minimize} \sum\delta_v*c_v\\ \text{s.t.}~~~~~y_v-x_v-t_v+\delta_v\ge 0\\ y_u\le x_v\\ \delta_v\le t_v\\ y_v\le \lambda minimizeδvcvs.t.     yvxvtv+δv0yuxvδvtvyvλ

最优情况下 δ v = max ⁡ ( x v − y v + t v , 0 ) \delta_v=\max(x_v-y_v+t_v,0) δv=max(xvyv+tv,0)
因为是最小化,所以 y u ≤ x v y_u\le x_v yuxv 可以用 ∞ ∗ max ⁡ ( y u − x v , 0 ) \infty*\max(y_u-x_v,0) max(yuxv,0) 的代价来表示。
δ v ≤ t v \delta_v\le t_v δvtv x v ≤ y v x_v\le y_v xvyv,代价为 ∞ ∗ max ⁡ ( x v − y v , 0 ) \infty*\max(x_v-y_v,0) max(xvyv,0)
为了方便,我们新建两个点 S , T S,T S,T S ≤ x v S\le x_v Sxv y v ≤ T y_v\le T yvT,分别为 ∞ ∗ max ⁡ ( S − x v , 0 ) \infty*\max(S-x_v,0) max(Sxv,0) ∞ ∗ max ⁡ ( y v − T , 0 ) \infty*\max(y_v-T,0) max(yvT,0),实际上这也是在框定 x v , y v x_v,y_v xv,yv 的范围。
y v ≤ λ y_v\le \lambda yvλ T − S ≤ λ T-S\le \lambda TSλ,权值为 ∞ ∗ max ⁡ ( T − S − λ , 0 ) \infty*\max(T-S-\lambda,0) max(TSλ,0)

于是我们相当于是要最小化:
∑ v c v ∗ max ⁡ ( x v − y v + t v , 0 ) + ∞ ∗ max ⁡ ( x v − y v , 0 ) + ∞ ∗ max ⁡ ( S − x v , 0 ) + ∞ ∗ max ⁡ ( y v − T , 0 ) + ∑ ( u , v ) ∈ E ∞ ∗ max ⁡ ( y u − x v , 0 ) + ∞ ∗ max ⁡ ( T − S − λ , 0 ) \sum_v c_v*\max(x_v-y_v+t_v,0)+\infty*\max(x_v-y_v,0)+\infty*\max(S-x_v,0)+\infty*\max(y_v-T,0)\\ +\sum_{(u,v)\in E}\infty*\max(y_u-x_v,0)\\ +\infty*\max(T-S-\lambda,0) vcvmax(xvyv+tv,0)+max(xvyv,0)+max(Sxv,0)+max(yvT,0)+(u,v)Emax(yuxv,0)+max(TSλ,0)

对比LP费用流的形式即可得出要建的边。
此时跑出的最大费用循环流的费用就是要求的最小值。

观察这个图,每个最大费用的循环流相当于是从 S S S 出发,走到 T T T,然后回到 S S S,产生一些费用。

原问题相当于想要最小化 λ \lambda λ,使得最大费用循环流 ≤ w \le w w,假设除了 T T T S S S 的边流 i i i 的流量的费用是 f i f_i fi,那么真实的费用是 f i − i λ f_i-i\lambda fiiλ,于是就是最小化 λ \lambda λ,使得 max ⁡ ( f i − i λ ) ≤ w \max(f_i-i\lambda)\le w max(fiiλ)w
即对于任意的 i i i,都要满足 λ ≥ f i − w i \lambda\ge \frac {f_i-w}i λifiw,即找到最大的 f i − w i \frac {f_i-w}i ifiw
这个可以表示为平面上 ( i , f i ) (i,f_i) (i,fi) ( 0 , w ) (0,w) (0,w) 的最大斜率, f i f_i fi 的图像是个凸包,最大值一定在端点取到,所以多路增广是OK的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值