BZOJ 2554: Color【条件概率】

题目描述:

有n个球排成一列,每个球都有一个颜色,用A-Z的大写字母来表示,我们每次随机选出两个球ball1,ball2,使得后者染上前者的颜色,求期望操作多少次,才能使得所有球的颜色都一样?
输出保留一位小数。

题目分析:

liu_runda大佬的博客

把答案分成每种颜色,就是求最后合成某种颜色的概率*合成这种颜色的期望步数。

g [ i ] g[i] g[i]表示这种颜色有 i i i个,最后 n n n个全部变成这种颜色的概率。
容易得到 g [ i ] = 1 2 g [ i − 1 ] + 1 2 g [ i + 1 ] g[i]=\frac 12g[i-1]+\frac 12g[i+1] g[i]=21g[i1]+21g[i+1],边界 g [ 0 ] = 0 , g [ n ] = 1 g[0]=0,g[n]=1 g[0]=0,g[n]=1
可以看出 g [ i ] = i n g[i]=\frac in g[i]=ni

f [ i ] f[i] f[i]表示这种颜色有 i i i个,最后 n n n个全部变成这种颜色的期望步数。
总共有 n ∗ ( n − 1 ) n*(n-1) n(n1)种方案,会使这种颜色数量改变的方案有 2 ∗ i ∗ ( n − i ) 2*i*(n-i) 2i(ni)种,所以数量改变的概率P可求,期望 1 P \frac 1P P1步后数量会改变。
但是注意,我们是在最终全部都会变成这种颜色的条件下算的期望步数,所以我们的转移需要去掉那些不能到达这个条件的概率, i i i转移到 i − 1 i-1 i1 i + 1 i+1 i+1的概率分别是 1 2 \frac 12 21,由 i − 1 i-1 i1到达最终状态的概率是 g [ i − 1 ] g[i-1] g[i1],所以 f [ i − 1 ] f[i-1] f[i1] f [ i ] f[i] f[i]的贡献是 1 2 ∗ g [ i − 1 ] \frac 12*g[i-1] 21g[i1],而不是简单的 1 2 \frac 12 21。同理, f [ i + 1 ] f[i+1] f[i+1]的贡献是 1 2 ∗ g [ i + 1 ] \frac 12*g[i+1] 21g[i+1]。令 G = 1 2 ∗ g [ i − 1 ] + 1 2 ∗ g [ i + 1 ] G=\frac 12*g[i-1]+\frac 12*g[i+1] G=21g[i1]+21g[i+1],就有: f [ i ] = 1 G ( 1 2 ∗ g [ i − 1 ] ∗ f [ i − 1 ] + 1 2 ∗ g [ i + 1 ] ∗ f [ i + 1 ] ) + 1 P f[i]=\frac 1G\left(\frac 12*g[i-1]*f[i-1]+\frac 12*g[i+1]*f[i+1]\right)+\frac 1P f[i]=G1(21g[i1]f[i1]+21g[i+1]f[i+1])+P1
化简一下就是 f [ i ] = ( i − 1 ) / ( 2 i ) ∗ f [ i − 1 ] + ( i + 1 ) / ( 2 i ) ∗ f [ i + 1 ] + n ∗ ( n − 1 ) 2 ∗ i ∗ ( n − i ) f[i]=(i-1)/(2i)*f[i-1]+(i+1)/(2i)*f[i+1]+\frac {n*(n-1)}{2*i*(n-i)} f[i]=(i1)/(2i)f[i1]+(i+1)/(2i)f[i+1]+2i(ni)n(n1)
f [ 0 ] f[0] f[0]无意义, f [ n ] = 0 f[n]=0 f[n]=0,把 f [ i ] f[i] f[i]代成 a [ i ] ∗ f [ 1 ] + b [ i ] a[i]*f[1]+b[i] a[i]f[1]+b[i]的形式递推,算出 f [ n ] = a [ n ] ∗ f [ 1 ] + b [ n ] f[n]=a[n]*f[1]+b[n] f[n]=a[n]f[1]+b[n],解出 f [ 1 ] f[1] f[1]即可。

Code:

#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int n,cnt[26];
double f1,a[maxn],b[maxn],ans;
char s[maxn];
int main()
{
	scanf("%s",s),n=strlen(s);
	for(int i=0;i<n;i++) cnt[s[i]-'A']++;
	a[1]=1,b[1]=0;
	for(int i=1;i<n;i++){
		a[i+1]=(a[i]-a[i-1]*(i-1)/(2*i))*(2*i)/(i+1);
		b[i+1]=(b[i]-b[i-1]*(i-1)/(2*i)-1.0*n*(n-1)/(2*i*(n-i)))*(2*i)/(i+1);
	}
	f1=-b[n]/a[n];
	for(int i=0;i<26;i++) ans+=1.0*cnt[i]/n*(a[cnt[i]]*f1+b[cnt[i]]);
	printf("%.1f\n",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值